用于偏振控制激光平行纳米加工的紧凑微球自干涉光刻技术。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-02-15 DOI:10.1364/OL.547830
Zhiwen Gao, Zhiyang Xu, Wei Liang, Chen Zhao, Tianrui Zhai, Yan Zhao, Yijian Jiang, Yinzhou Yan
{"title":"用于偏振控制激光平行纳米加工的紧凑微球自干涉光刻技术。","authors":"Zhiwen Gao, Zhiyang Xu, Wei Liang, Chen Zhao, Tianrui Zhai, Yan Zhao, Yijian Jiang, Yinzhou Yan","doi":"10.1364/OL.547830","DOIUrl":null,"url":null,"abstract":"<p><p>We develop compact microsphere self-interference lithography via a single laser beam incident into a self-assembled dual-layered microsphere array to achieve parallel fabrication of periodic units with nanopatterns (PUNs). Interference units with tens of millions are achieved through micron-thick dual-layered microsphere arrays. The periodic units with nanoholes (NHs), nanogrooves (NGs), and nanoslots (NSs) can be fabricated by simply varying incident laser polarization states. The minimum linewidth is 75 nm (∼λ/4.5), and the single-shot exposure area is up to 1 cm<sup>2</sup>. An analytical model of polarization-dependent tri-beam interferences is developed to interpret the PUN formation. Au-coated PUNs demonstrate extraordinary performance for customized surface-enhanced Raman spectroscopy substrates, of which the polarization sensitivity can be regulated and the limit of detection is down to 3 × 10<sup>-10</sup> M. The present work opens up new opportunities for high-throughput laser parallel nanofabrication for various applications.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1248-1251"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact microsphere self-interference lithography for polarization-controlled laser parallel nanofabrication.\",\"authors\":\"Zhiwen Gao, Zhiyang Xu, Wei Liang, Chen Zhao, Tianrui Zhai, Yan Zhao, Yijian Jiang, Yinzhou Yan\",\"doi\":\"10.1364/OL.547830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop compact microsphere self-interference lithography via a single laser beam incident into a self-assembled dual-layered microsphere array to achieve parallel fabrication of periodic units with nanopatterns (PUNs). Interference units with tens of millions are achieved through micron-thick dual-layered microsphere arrays. The periodic units with nanoholes (NHs), nanogrooves (NGs), and nanoslots (NSs) can be fabricated by simply varying incident laser polarization states. The minimum linewidth is 75 nm (∼λ/4.5), and the single-shot exposure area is up to 1 cm<sup>2</sup>. An analytical model of polarization-dependent tri-beam interferences is developed to interpret the PUN formation. Au-coated PUNs demonstrate extraordinary performance for customized surface-enhanced Raman spectroscopy substrates, of which the polarization sensitivity can be regulated and the limit of detection is down to 3 × 10<sup>-10</sup> M. The present work opens up new opportunities for high-throughput laser parallel nanofabrication for various applications.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 4\",\"pages\":\"1248-1251\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.547830\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.547830","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了紧凑的微球自干涉光刻技术,通过单一激光束入射到自组装的双层微球阵列中,以实现具有纳米图案(PUNs)的周期单元的平行制造。通过微米厚的双层微球阵列实现了千万级的干涉单元。通过改变入射激光的偏振态,可以制备出具有纳米孔(NHs)、纳米槽(ng)和纳米槽(NSs)的周期单元。最小线宽为75 nm (~ λ/4.5),单次曝光面积可达1 cm2。建立了偏振相关三光束干涉的解析模型来解释双关的形成。在定制的表面增强拉曼光谱衬底上,镀金双极器件表现出非凡的性能,其偏振灵敏度可调节,检测限低至3 × 10-10 M。本研究为高通量激光平行纳米加工的各种应用开辟了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact microsphere self-interference lithography for polarization-controlled laser parallel nanofabrication.

We develop compact microsphere self-interference lithography via a single laser beam incident into a self-assembled dual-layered microsphere array to achieve parallel fabrication of periodic units with nanopatterns (PUNs). Interference units with tens of millions are achieved through micron-thick dual-layered microsphere arrays. The periodic units with nanoholes (NHs), nanogrooves (NGs), and nanoslots (NSs) can be fabricated by simply varying incident laser polarization states. The minimum linewidth is 75 nm (∼λ/4.5), and the single-shot exposure area is up to 1 cm2. An analytical model of polarization-dependent tri-beam interferences is developed to interpret the PUN formation. Au-coated PUNs demonstrate extraordinary performance for customized surface-enhanced Raman spectroscopy substrates, of which the polarization sensitivity can be regulated and the limit of detection is down to 3 × 10-10 M. The present work opens up new opportunities for high-throughput laser parallel nanofabrication for various applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信