向精确放射药物治疗的计算核肿瘤学:当前的工具、技术和未知领域。

Tahir Yusufaly, Emilie Roncali, Julia Brosch-Lenz, Carlos Uribe, Abhinav K Jha, Geoffrey Currie, Joyita Dutta, Georges El-Fakhri, Helena McMeekin, Neeta Pandit-Taskar, Jazmin Schwartz, Kuangyu Shi, Lidia Strigari, Habib Zaidi, Babak Saboury, Arman Rahmim
{"title":"向精确放射药物治疗的计算核肿瘤学:当前的工具、技术和未知领域。","authors":"Tahir Yusufaly, Emilie Roncali, Julia Brosch-Lenz, Carlos Uribe, Abhinav K Jha, Geoffrey Currie, Joyita Dutta, Georges El-Fakhri, Helena McMeekin, Neeta Pandit-Taskar, Jazmin Schwartz, Kuangyu Shi, Lidia Strigari, Habib Zaidi, Babak Saboury, Arman Rahmim","doi":"10.2967/jnumed.124.267927","DOIUrl":null,"url":null,"abstract":"<p><p>Radiopharmaceutical therapy (RPT), with its targeted delivery of cytotoxic ionizing radiation, demonstrates significant potential for treating a wide spectrum of malignancies, with particularly unique benefits for metastatic disease. There is an opportunity to optimize RPTs and enhance the precision of theranostics by moving beyond a one-size-fits-all approach and using patient-specific image-based dosimetry for personalized treatment planning. Such an approach, however, requires accurate methods and tools for the mathematic modeling and prediction of dose and clinical outcome. To this end, the SNMMI AI-Dosimetry Working Group is promoting the paradigm of computational nuclear oncology: mathematic models and computational tools describing the hierarchy of etiologic mechanisms involved in RPT dose response. This includes radiopharmacokinetics for image-based internal dosimetry and radiobiology for the mapping of dose response to clinical endpoints. The former area originates in pharmacotherapy, whereas the latter originates in radiotherapy. Accordingly, models and methods developed in these predecessor disciplines serve as a foundation on which to develop a repurposed set of tools more appropriate to RPT. Over the long term, this computational nuclear oncology framework also promises to facilitate widespread cross-fertilization of ideas between nuclear medicine and the greater mathematic and computational oncology communities.</p>","PeriodicalId":94099,"journal":{"name":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","volume":" ","pages":"509-515"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960611/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories.\",\"authors\":\"Tahir Yusufaly, Emilie Roncali, Julia Brosch-Lenz, Carlos Uribe, Abhinav K Jha, Geoffrey Currie, Joyita Dutta, Georges El-Fakhri, Helena McMeekin, Neeta Pandit-Taskar, Jazmin Schwartz, Kuangyu Shi, Lidia Strigari, Habib Zaidi, Babak Saboury, Arman Rahmim\",\"doi\":\"10.2967/jnumed.124.267927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiopharmaceutical therapy (RPT), with its targeted delivery of cytotoxic ionizing radiation, demonstrates significant potential for treating a wide spectrum of malignancies, with particularly unique benefits for metastatic disease. There is an opportunity to optimize RPTs and enhance the precision of theranostics by moving beyond a one-size-fits-all approach and using patient-specific image-based dosimetry for personalized treatment planning. Such an approach, however, requires accurate methods and tools for the mathematic modeling and prediction of dose and clinical outcome. To this end, the SNMMI AI-Dosimetry Working Group is promoting the paradigm of computational nuclear oncology: mathematic models and computational tools describing the hierarchy of etiologic mechanisms involved in RPT dose response. This includes radiopharmacokinetics for image-based internal dosimetry and radiobiology for the mapping of dose response to clinical endpoints. The former area originates in pharmacotherapy, whereas the latter originates in radiotherapy. Accordingly, models and methods developed in these predecessor disciplines serve as a foundation on which to develop a repurposed set of tools more appropriate to RPT. Over the long term, this computational nuclear oncology framework also promises to facilitate widespread cross-fertilization of ideas between nuclear medicine and the greater mathematic and computational oncology communities.</p>\",\"PeriodicalId\":94099,\"journal\":{\"name\":\"Journal of nuclear medicine : official publication, Society of Nuclear Medicine\",\"volume\":\" \",\"pages\":\"509-515\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960611/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nuclear medicine : official publication, Society of Nuclear Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2967/jnumed.124.267927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.124.267927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射药物治疗(RPT),其靶向递送细胞毒性电离辐射,显示出治疗多种恶性肿瘤的巨大潜力,特别是对转移性疾病的独特益处。通过超越一刀切的方法,并使用基于患者特定图像的剂量学进行个性化治疗计划,有机会优化RPTs并提高治疗学的准确性。然而,这种方法需要精确的方法和工具来进行剂量和临床结果的数学建模和预测。为此,SNMMI人工智能剂量学工作组正在推广计算核肿瘤学范式:描述RPT剂量反应中涉及的病因机制层次的数学模型和计算工具。这包括基于图像的内剂量学的放射药代动力学和用于临床终点剂量反应映射的放射生物学。前者起源于药物治疗,而后者起源于放射治疗。因此,在这些先前的学科中开发的模型和方法作为开发更适合于RPT的一套重新使用的工具的基础。从长远来看,这个计算核肿瘤学框架也有望促进核医学与更大的数学和计算肿瘤学社区之间思想的广泛交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories.

Radiopharmaceutical therapy (RPT), with its targeted delivery of cytotoxic ionizing radiation, demonstrates significant potential for treating a wide spectrum of malignancies, with particularly unique benefits for metastatic disease. There is an opportunity to optimize RPTs and enhance the precision of theranostics by moving beyond a one-size-fits-all approach and using patient-specific image-based dosimetry for personalized treatment planning. Such an approach, however, requires accurate methods and tools for the mathematic modeling and prediction of dose and clinical outcome. To this end, the SNMMI AI-Dosimetry Working Group is promoting the paradigm of computational nuclear oncology: mathematic models and computational tools describing the hierarchy of etiologic mechanisms involved in RPT dose response. This includes radiopharmacokinetics for image-based internal dosimetry and radiobiology for the mapping of dose response to clinical endpoints. The former area originates in pharmacotherapy, whereas the latter originates in radiotherapy. Accordingly, models and methods developed in these predecessor disciplines serve as a foundation on which to develop a repurposed set of tools more appropriate to RPT. Over the long term, this computational nuclear oncology framework also promises to facilitate widespread cross-fertilization of ideas between nuclear medicine and the greater mathematic and computational oncology communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信