{"title":"基于privateQTL的安全联合数量性状位点映射。","authors":"Yoolim Annie Choi, Yebin Kim, Peihan Miao, Tuuli Lappalainen, Gamze Gürsoy","doi":"10.1016/j.xgen.2025.100769","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationship between genotypes and phenotypes is crucial for advancing personalized medicine. Expression quantitative trait loci (eQTL) mapping plays a significant role by correlating genetic variants to gene expression levels. Despite the progress made by large-scale projects, eQTL mapping still faces challenges in statistical power and privacy concerns. Multi-site studies can increase sample sizes but are hindered by privacy issues. We present privateQTL, a novel framework leveraging secure multi-party computation for secure and federated eQTL mapping. When tested in a real-world scenario with data from different studies, privateQTL outperformed meta-analysis by accurately correcting for covariates and batch effect and retaining higher accuracy and precision for both eGene-eVariant mapping and effect size estimation. In addition, privateQTL is modular and scalable, making it adaptable for other molecular phenotypes and large-scale studies. Our results indicate that privateQTL is a practical solution for privacy-preserving collaborative eQTL mapping.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"5 2","pages":"100769"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872535/pdf/","citationCount":"0","resultStr":"{\"title\":\"Secure and federated quantitative trait loci mapping with privateQTL.\",\"authors\":\"Yoolim Annie Choi, Yebin Kim, Peihan Miao, Tuuli Lappalainen, Gamze Gürsoy\",\"doi\":\"10.1016/j.xgen.2025.100769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the relationship between genotypes and phenotypes is crucial for advancing personalized medicine. Expression quantitative trait loci (eQTL) mapping plays a significant role by correlating genetic variants to gene expression levels. Despite the progress made by large-scale projects, eQTL mapping still faces challenges in statistical power and privacy concerns. Multi-site studies can increase sample sizes but are hindered by privacy issues. We present privateQTL, a novel framework leveraging secure multi-party computation for secure and federated eQTL mapping. When tested in a real-world scenario with data from different studies, privateQTL outperformed meta-analysis by accurately correcting for covariates and batch effect and retaining higher accuracy and precision for both eGene-eVariant mapping and effect size estimation. In addition, privateQTL is modular and scalable, making it adaptable for other molecular phenotypes and large-scale studies. Our results indicate that privateQTL is a practical solution for privacy-preserving collaborative eQTL mapping.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\"5 2\",\"pages\":\"100769\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872535/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Secure and federated quantitative trait loci mapping with privateQTL.
Understanding the relationship between genotypes and phenotypes is crucial for advancing personalized medicine. Expression quantitative trait loci (eQTL) mapping plays a significant role by correlating genetic variants to gene expression levels. Despite the progress made by large-scale projects, eQTL mapping still faces challenges in statistical power and privacy concerns. Multi-site studies can increase sample sizes but are hindered by privacy issues. We present privateQTL, a novel framework leveraging secure multi-party computation for secure and federated eQTL mapping. When tested in a real-world scenario with data from different studies, privateQTL outperformed meta-analysis by accurately correcting for covariates and batch effect and retaining higher accuracy and precision for both eGene-eVariant mapping and effect size estimation. In addition, privateQTL is modular and scalable, making it adaptable for other molecular phenotypes and large-scale studies. Our results indicate that privateQTL is a practical solution for privacy-preserving collaborative eQTL mapping.