景观级人为干扰导致热带森林哺乳动物种群的减少和收缩。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-02-13 eCollection Date: 2025-02-01 DOI:10.1371/journal.pbio.3002976
Ilaria Greco, Lydia Beaudrot, Chris Sutherland, Simone Tenan, Chia Hsieh, Daniel Gorczynski, Douglas Sheil, Jedediah Brodie, Mohammad Firoz Ahmed, Jorge Ahumada, Rajan Amin, Megan Baker-Watton, Ramie Husneara Begum, Francesco Bisi, Robert Bitariho, Ahimsa Campos-Arceiz, Elildo A R Carvalho, Daniel Cornélis, Giacomo Cremonesi, Virgínia Londe de Camargos, Iariaella Elimanantsoa, Santiago Espinosa, Adeline Fayolle, Davy Fonteyn, Abishek Harihar, Harry Hilser, Alys Granados, Patrick A Jansen, Jayasilan Mohd-Azlan, Caspian Johnson, Steig Johnson, Dipankar Lahkar, Marcela Guimarães Moreira Lima, Matthew Scott Luskin, Marcelo Magioli, Emanuel H Martin, Adriano Martinoli, Ronaldo Gonçalves Morato, Badru Mugerwa, Lain E Pardo, Julia Salvador, Fernanda Santos, Cédric Vermeulen, Patricia C Wright, Francesco Rovero
{"title":"景观级人为干扰导致热带森林哺乳动物种群的减少和收缩。","authors":"Ilaria Greco, Lydia Beaudrot, Chris Sutherland, Simone Tenan, Chia Hsieh, Daniel Gorczynski, Douglas Sheil, Jedediah Brodie, Mohammad Firoz Ahmed, Jorge Ahumada, Rajan Amin, Megan Baker-Watton, Ramie Husneara Begum, Francesco Bisi, Robert Bitariho, Ahimsa Campos-Arceiz, Elildo A R Carvalho, Daniel Cornélis, Giacomo Cremonesi, Virgínia Londe de Camargos, Iariaella Elimanantsoa, Santiago Espinosa, Adeline Fayolle, Davy Fonteyn, Abishek Harihar, Harry Hilser, Alys Granados, Patrick A Jansen, Jayasilan Mohd-Azlan, Caspian Johnson, Steig Johnson, Dipankar Lahkar, Marcela Guimarães Moreira Lima, Matthew Scott Luskin, Marcelo Magioli, Emanuel H Martin, Adriano Martinoli, Ronaldo Gonçalves Morato, Badru Mugerwa, Lain E Pardo, Julia Salvador, Fernanda Santos, Cédric Vermeulen, Patricia C Wright, Francesco Rovero","doi":"10.1371/journal.pbio.3002976","DOIUrl":null,"url":null,"abstract":"<p><p>Tropical forests hold most of Earth's biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 2","pages":"e3002976"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825024/pdf/","citationCount":"0","resultStr":"{\"title\":\"Landscape-level human disturbance results in loss and contraction of mammalian populations in tropical forests.\",\"authors\":\"Ilaria Greco, Lydia Beaudrot, Chris Sutherland, Simone Tenan, Chia Hsieh, Daniel Gorczynski, Douglas Sheil, Jedediah Brodie, Mohammad Firoz Ahmed, Jorge Ahumada, Rajan Amin, Megan Baker-Watton, Ramie Husneara Begum, Francesco Bisi, Robert Bitariho, Ahimsa Campos-Arceiz, Elildo A R Carvalho, Daniel Cornélis, Giacomo Cremonesi, Virgínia Londe de Camargos, Iariaella Elimanantsoa, Santiago Espinosa, Adeline Fayolle, Davy Fonteyn, Abishek Harihar, Harry Hilser, Alys Granados, Patrick A Jansen, Jayasilan Mohd-Azlan, Caspian Johnson, Steig Johnson, Dipankar Lahkar, Marcela Guimarães Moreira Lima, Matthew Scott Luskin, Marcelo Magioli, Emanuel H Martin, Adriano Martinoli, Ronaldo Gonçalves Morato, Badru Mugerwa, Lain E Pardo, Julia Salvador, Fernanda Santos, Cédric Vermeulen, Patricia C Wright, Francesco Rovero\",\"doi\":\"10.1371/journal.pbio.3002976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tropical forests hold most of Earth's biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 2\",\"pages\":\"e3002976\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002976\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002976","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

热带森林拥有地球上大部分的生物多样性和比其他生物群系更集中的濒危哺乳动物。因此,一些哺乳动物物种几乎只存在于保护区,通常是在广泛变化和人口稠密的景观中。其他物种依赖于人烟稀少的偏远森林地区。然而,目前尚不清楚热带森林中的哺乳动物群落如何应对它们所处的更广泛景观中的人为压力。随着各国政府承诺增加全球保护区的范围,以防止生物多样性进一步丧失,确定支持野生动物的景观水平条件变得至关重要。在这里,我们评估了哺乳动物群落与更广泛景观中人为威胁之间的关系。利用3大洲37个森林239种哺乳动物的标准化泛热带数据集,建立了最先进的群落模型,同时建立了物种丰富度和群落占用率作为群落结构的互补指标。在监测的群落中,50公里缓冲区内的森林损失和破碎化与占用减少有关,而物种丰富度不受其影响。相比之下,景观尺度的人类密度与哺乳动物丰富度的减少有关,但与占用率无关,这表明敏感物种已经灭绝,而其余分类群相对未受影响。综上所述,这些结果提供了在更广泛的景观中发生的人为压力引发的热带森林内灭绝过滤的证据。因此,如果不同时投资于解决景观规模的威胁,现有的和新的保护区可能无法实现预期的生物多样性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landscape-level human disturbance results in loss and contraction of mammalian populations in tropical forests.

Tropical forests hold most of Earth's biodiversity and a higher concentration of threatened mammals than other biomes. As a result, some mammal species persist almost exclusively in protected areas, often within extensively transformed and heavily populated landscapes. Other species depend on remaining remote forested areas with sparse human populations. However, it remains unclear how mammalian communities in tropical forests respond to anthropogenic pressures in the broader landscape in which they are embedded. As governments commit to increasing the extent of global protected areas to prevent further biodiversity loss, identifying the landscape-level conditions supporting wildlife has become essential. Here, we assessed the relationship between mammal communities and anthropogenic threats in the broader landscape. We simultaneously modeled species richness and community occupancy as complementary metrics of community structure, using a state-of-the-art community model parameterized with a standardized pan-tropical data set of 239 mammal species from 37 forests across 3 continents. Forest loss and fragmentation within a 50-km buffer were associated with reduced occupancy in monitored communities, while species richness was unaffected by them. In contrast, landscape-scale human density was associated with reduced mammal richness but not occupancy, suggesting that sensitive species have been extirpated, while remaining taxa are relatively unaffected. Taken together, these results provide evidence of extinction filtering within tropical forests triggered by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new reserves may not achieve the desired biodiversity outcomes without concurrent investment in addressing landscape-scale threats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信