负责α -突触核蛋白聚集的因子。

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Khuraijam Surjalal Singh, Rahul Verma, Nagendra Singh, Laishram Rajendrakumar Singh, Akshita Gupta
{"title":"负责α -突触核蛋白聚集的因子。","authors":"Khuraijam Surjalal Singh, Rahul Verma, Nagendra Singh, Laishram Rajendrakumar Singh, Akshita Gupta","doi":"10.1016/bs.pmbts.2024.11.004","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregation of α-Synuclein (α-Syn) is the hallmark of the pathophysiology of Parkinson's disease. Apart from aggregates, α-Syn can exist in multiple abnormal forms such as oligomers, protofibrils, fibrils amorphous aggregates etc. These forms initiate aggressive, selective and progressive neuronal atrophy through various modes such as mitochondrial dysfunction, lysosomal malfunction, and disruption of calcium homeostasis in various α-Syn-related neurodegenerative disorders. Structurally α-Syn is divided into three domains: N-terminal region made by amino acids1-67 (amphipathic, lysine-rich and interacts with acidic lipid membranes), Non-amyloid-β component (NAC) region made by amino acids 67-95 (hydrophobic region, central to α-syn aggregation) and C-terminal region made by amino acids 96-140 (acidic and proline-rich region responsible for interaction with other proteins). α-Syn follows the pattern of a typical intrinsically disordered protein and lacks a proper folded conformation and exist majorly in a random coil form, though on lipid binding the protein assumes an α-helical structure. The central random coil region of α-Syn is involved in fibril formation transforming into β-sheet rich secondary structures which is a characteristic of amyloids. This chapter entails an elaborate explanation of factors influencing the structure, function and aggregation of α-Syn. Major factors being abnormally high physiological expression of the protein, mutations, posttranslational modifications and also interactions with small molecules such as osmolytes in the cellular milieu. Studying the factors responsible for misfolding and aggregation of α-Syn along with the mechanism involved is crucial to understanding their implications in Parkinson's disease, and will yield valuable insights into disease mechanisms, potential therapeutic strategies.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"271-292"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors responsible for alpha-Synuclein aggregation.\",\"authors\":\"Khuraijam Surjalal Singh, Rahul Verma, Nagendra Singh, Laishram Rajendrakumar Singh, Akshita Gupta\",\"doi\":\"10.1016/bs.pmbts.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aggregation of α-Synuclein (α-Syn) is the hallmark of the pathophysiology of Parkinson's disease. Apart from aggregates, α-Syn can exist in multiple abnormal forms such as oligomers, protofibrils, fibrils amorphous aggregates etc. These forms initiate aggressive, selective and progressive neuronal atrophy through various modes such as mitochondrial dysfunction, lysosomal malfunction, and disruption of calcium homeostasis in various α-Syn-related neurodegenerative disorders. Structurally α-Syn is divided into three domains: N-terminal region made by amino acids1-67 (amphipathic, lysine-rich and interacts with acidic lipid membranes), Non-amyloid-β component (NAC) region made by amino acids 67-95 (hydrophobic region, central to α-syn aggregation) and C-terminal region made by amino acids 96-140 (acidic and proline-rich region responsible for interaction with other proteins). α-Syn follows the pattern of a typical intrinsically disordered protein and lacks a proper folded conformation and exist majorly in a random coil form, though on lipid binding the protein assumes an α-helical structure. The central random coil region of α-Syn is involved in fibril formation transforming into β-sheet rich secondary structures which is a characteristic of amyloids. This chapter entails an elaborate explanation of factors influencing the structure, function and aggregation of α-Syn. Major factors being abnormally high physiological expression of the protein, mutations, posttranslational modifications and also interactions with small molecules such as osmolytes in the cellular milieu. Studying the factors responsible for misfolding and aggregation of α-Syn along with the mechanism involved is crucial to understanding their implications in Parkinson's disease, and will yield valuable insights into disease mechanisms, potential therapeutic strategies.</p>\",\"PeriodicalId\":49280,\"journal\":{\"name\":\"Progress in Molecular Biology and Translational Science\",\"volume\":\"211 \",\"pages\":\"271-292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Molecular Biology and Translational Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2024.11.004\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.11.004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

α-突触核蛋白(α-Syn)的聚集是帕金森病病理生理的标志。除聚集体外,α-Syn还能以低聚物、原原纤维、原原纤维、非晶态聚集体等多种异常形式存在。在各种α-突触相关的神经退行性疾病中,这些形式通过线粒体功能障碍、溶酶体功能障碍和钙稳态破坏等多种模式引发侵袭性、选择性和进行性神经元萎缩。α-Syn在结构上分为3个结构域:由氨基酸s1-67组成的n端区(两亲性,富含赖氨酸,与酸性脂膜相互作用),由氨基酸67-95组成的非淀粉样蛋白-β组分(NAC)区(疏水区,α-Syn聚集的中心)和由氨基酸96-140组成的c端区(酸性和富含脯氨酸区,负责与其他蛋白质相互作用)。α-Syn遵循典型的内在无序蛋白的模式,缺乏适当的折叠构象,主要以随机线圈形式存在,尽管在脂质结合时蛋白质呈α-螺旋结构。α-Syn的中心随机线圈区参与了淀粉样蛋白的特征,即原纤维的形成转化为富含β-片的二级结构。本章详细阐述了α-Syn的结构、功能和聚集的影响因素。主要因素是蛋白质异常高的生理表达、突变、翻译后修饰以及与细胞环境中的小分子(如渗透物)的相互作用。研究α-Syn错误折叠和聚集的相关因素及其机制对于理解其在帕金森病中的意义至关重要,并将为疾病机制和潜在的治疗策略提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factors responsible for alpha-Synuclein aggregation.

Aggregation of α-Synuclein (α-Syn) is the hallmark of the pathophysiology of Parkinson's disease. Apart from aggregates, α-Syn can exist in multiple abnormal forms such as oligomers, protofibrils, fibrils amorphous aggregates etc. These forms initiate aggressive, selective and progressive neuronal atrophy through various modes such as mitochondrial dysfunction, lysosomal malfunction, and disruption of calcium homeostasis in various α-Syn-related neurodegenerative disorders. Structurally α-Syn is divided into three domains: N-terminal region made by amino acids1-67 (amphipathic, lysine-rich and interacts with acidic lipid membranes), Non-amyloid-β component (NAC) region made by amino acids 67-95 (hydrophobic region, central to α-syn aggregation) and C-terminal region made by amino acids 96-140 (acidic and proline-rich region responsible for interaction with other proteins). α-Syn follows the pattern of a typical intrinsically disordered protein and lacks a proper folded conformation and exist majorly in a random coil form, though on lipid binding the protein assumes an α-helical structure. The central random coil region of α-Syn is involved in fibril formation transforming into β-sheet rich secondary structures which is a characteristic of amyloids. This chapter entails an elaborate explanation of factors influencing the structure, function and aggregation of α-Syn. Major factors being abnormally high physiological expression of the protein, mutations, posttranslational modifications and also interactions with small molecules such as osmolytes in the cellular milieu. Studying the factors responsible for misfolding and aggregation of α-Syn along with the mechanism involved is crucial to understanding their implications in Parkinson's disease, and will yield valuable insights into disease mechanisms, potential therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信