利用集群计算从空间转录组学数据中恢复单细胞基因表达谱的方案。

IF 1.3 Q4 BIOCHEMICAL RESEARCH METHODS
STAR Protocols Pub Date : 2025-03-21 Epub Date: 2025-02-12 DOI:10.1016/j.xpro.2025.103636
Young Je Lee, Hao Chen, Jose Lugo-Martinez
{"title":"利用集群计算从空间转录组学数据中恢复单细胞基因表达谱的方案。","authors":"Young Je Lee, Hao Chen, Jose Lugo-Martinez","doi":"10.1016/j.xpro.2025.103636","DOIUrl":null,"url":null,"abstract":"<p><p>Many widely used spatial transcriptomics technologies, such as Visium, capture data at multicellular resolution, precluding single-cell analysis. Here, we present scResolve, a computational protocol to recover single-cell gene expression profiles from low-resolution spatial transcriptomics data. We describe steps for computational environment setup and preparing data and formatting. We then detail procedures for running super-resolution inference and cell segmentation modules. scResolve runs in a cluster environment, leveraging parallel computing to accelerate data processing and deliver faster results. For complete details on the use and execution of this protocol, please refer to Chen et al.<sup>1</sup>.</p>","PeriodicalId":34214,"journal":{"name":"STAR Protocols","volume":"6 1","pages":"103636"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protocol to recover single-cell gene expression profiles from spatial transcriptomics data using cluster computing.\",\"authors\":\"Young Je Lee, Hao Chen, Jose Lugo-Martinez\",\"doi\":\"10.1016/j.xpro.2025.103636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many widely used spatial transcriptomics technologies, such as Visium, capture data at multicellular resolution, precluding single-cell analysis. Here, we present scResolve, a computational protocol to recover single-cell gene expression profiles from low-resolution spatial transcriptomics data. We describe steps for computational environment setup and preparing data and formatting. We then detail procedures for running super-resolution inference and cell segmentation modules. scResolve runs in a cluster environment, leveraging parallel computing to accelerate data processing and deliver faster results. For complete details on the use and execution of this protocol, please refer to Chen et al.<sup>1</sup>.</p>\",\"PeriodicalId\":34214,\"journal\":{\"name\":\"STAR Protocols\",\"volume\":\"6 1\",\"pages\":\"103636\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STAR Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xpro.2025.103636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STAR Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xpro.2025.103636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

许多广泛使用的空间转录组学技术,如Visium,在多细胞分辨率下捕获数据,排除了单细胞分析。在这里,我们提出了scResolve,一个从低分辨率空间转录组学数据中恢复单细胞基因表达谱的计算方案。我们描述了计算环境设置和准备数据和格式化的步骤。然后,我们详细介绍了运行超分辨率推理和细胞分割模块的程序。scResolve在集群环境中运行,利用并行计算来加速数据处理并提供更快的结果。有关该协议的使用和执行的完整细节,请参见Chen等人1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protocol to recover single-cell gene expression profiles from spatial transcriptomics data using cluster computing.

Many widely used spatial transcriptomics technologies, such as Visium, capture data at multicellular resolution, precluding single-cell analysis. Here, we present scResolve, a computational protocol to recover single-cell gene expression profiles from low-resolution spatial transcriptomics data. We describe steps for computational environment setup and preparing data and formatting. We then detail procedures for running super-resolution inference and cell segmentation modules. scResolve runs in a cluster environment, leveraging parallel computing to accelerate data processing and deliver faster results. For complete details on the use and execution of this protocol, please refer to Chen et al.1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
STAR Protocols
STAR Protocols Biochemistry, Genetics and Molecular Biology-General Biochemistry, Genetics and Molecular Biology
CiteScore
2.00
自引率
0.00%
发文量
789
审稿时长
10 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信