{"title":"OM85通过抑制Notch表达和调节IFN-γ/IL-4比值改善博莱霉素诱导的小鼠肺纤维化。","authors":"Yaling Yu, Zhuanyun Li, Zhenghao Hu, Tianfeng Peng, Ruijie Niu, Peng Sun, Xiaorong Wang, Jinnong Zhang","doi":"10.1038/s41598-025-89874-5","DOIUrl":null,"url":null,"abstract":"<p><p>Th1/Th2 balances may play a vital role in the processes of inflammation and fibrosis. The Th1/Th2 paradigm can be evaluated by representing IFN-γ for Th1 and IL-4 for Th2. OM-85 BV encouraged preferential development of the Th1-type immunity characterized by amplified IFN-γ and decreased IL-4 production. This study aimed to evaluate the inhibitory effect of OM85 on bleomycin (BLM)-induced pulmonary fibrosis in C57 and its possible mechanisms. In vitro experiments demonstrated that OM85 exhibited no significant toxicity to HELF cells. OM-85 inhibited the TGF-β1-induced protein expression of Notch1 and Hes1 and reduced the fibrosis-related marker profiles, such as collagen I, collagen III, fibronectin, P21, and α-SMA, following TGF-β1 treatment of these cells. Immunofluorescence also revealed that OM-85 decreased the expression of α-SMA induced by TGF-β1 in HELF cells. In the vivo experiments, a pulmonary fibrosis model was established by administering three intratracheal doses of BLM (1 mg/kg). The BLM-OM85 group was exposed to an aerosol containing 10.5 mg of OM-85 dissolved in 10 mL of sterile PBS on days 42, 44, 46, 49, 51, and 53. BLM-induced pulmonary fibrosis, leading to increased levels of lung hydroxyproline, total cell count, macrophages, neutrophils, lymphocytes, and the expression of TGF-β1 as well as Notch1 and Hes1 in lung tissue, along with fibrosis-associated proteins such as collagen I, collagen III, fibronectin, P21, and α-SMA. Additionally, the Th1 response was suppressed, as evidenced by decreased IFN-γ in the bronchoalveolar lavage fluid (BALF), while the Th2 response was amplified, marked by increased IL-4 levels in BALF. Moreover, morphological assessments showed that BLM caused increased Ashcroft scores, relative collagen content, and an expanded damaged area, as well as an increased optical density (OD) of collagen I. The administration of OM-85 significantly mitigated these effects. These findings suggest that OM-85 holds therapeutic potential for BLM-induced pulmonary fibrosis in female C57 mice, partly due to the inhibition of Notch1 and Hes1 expression and the modulation of the IFN-γ/IL-4 ratio.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5436"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825818/pdf/","citationCount":"0","resultStr":"{\"title\":\"OM85 ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting Notch expression and modulating the IFN-γ/IL-4 ratio.\",\"authors\":\"Yaling Yu, Zhuanyun Li, Zhenghao Hu, Tianfeng Peng, Ruijie Niu, Peng Sun, Xiaorong Wang, Jinnong Zhang\",\"doi\":\"10.1038/s41598-025-89874-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Th1/Th2 balances may play a vital role in the processes of inflammation and fibrosis. The Th1/Th2 paradigm can be evaluated by representing IFN-γ for Th1 and IL-4 for Th2. OM-85 BV encouraged preferential development of the Th1-type immunity characterized by amplified IFN-γ and decreased IL-4 production. This study aimed to evaluate the inhibitory effect of OM85 on bleomycin (BLM)-induced pulmonary fibrosis in C57 and its possible mechanisms. In vitro experiments demonstrated that OM85 exhibited no significant toxicity to HELF cells. OM-85 inhibited the TGF-β1-induced protein expression of Notch1 and Hes1 and reduced the fibrosis-related marker profiles, such as collagen I, collagen III, fibronectin, P21, and α-SMA, following TGF-β1 treatment of these cells. Immunofluorescence also revealed that OM-85 decreased the expression of α-SMA induced by TGF-β1 in HELF cells. In the vivo experiments, a pulmonary fibrosis model was established by administering three intratracheal doses of BLM (1 mg/kg). The BLM-OM85 group was exposed to an aerosol containing 10.5 mg of OM-85 dissolved in 10 mL of sterile PBS on days 42, 44, 46, 49, 51, and 53. BLM-induced pulmonary fibrosis, leading to increased levels of lung hydroxyproline, total cell count, macrophages, neutrophils, lymphocytes, and the expression of TGF-β1 as well as Notch1 and Hes1 in lung tissue, along with fibrosis-associated proteins such as collagen I, collagen III, fibronectin, P21, and α-SMA. Additionally, the Th1 response was suppressed, as evidenced by decreased IFN-γ in the bronchoalveolar lavage fluid (BALF), while the Th2 response was amplified, marked by increased IL-4 levels in BALF. Moreover, morphological assessments showed that BLM caused increased Ashcroft scores, relative collagen content, and an expanded damaged area, as well as an increased optical density (OD) of collagen I. The administration of OM-85 significantly mitigated these effects. These findings suggest that OM-85 holds therapeutic potential for BLM-induced pulmonary fibrosis in female C57 mice, partly due to the inhibition of Notch1 and Hes1 expression and the modulation of the IFN-γ/IL-4 ratio.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"5436\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-89874-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89874-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
OM85 ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting Notch expression and modulating the IFN-γ/IL-4 ratio.
Th1/Th2 balances may play a vital role in the processes of inflammation and fibrosis. The Th1/Th2 paradigm can be evaluated by representing IFN-γ for Th1 and IL-4 for Th2. OM-85 BV encouraged preferential development of the Th1-type immunity characterized by amplified IFN-γ and decreased IL-4 production. This study aimed to evaluate the inhibitory effect of OM85 on bleomycin (BLM)-induced pulmonary fibrosis in C57 and its possible mechanisms. In vitro experiments demonstrated that OM85 exhibited no significant toxicity to HELF cells. OM-85 inhibited the TGF-β1-induced protein expression of Notch1 and Hes1 and reduced the fibrosis-related marker profiles, such as collagen I, collagen III, fibronectin, P21, and α-SMA, following TGF-β1 treatment of these cells. Immunofluorescence also revealed that OM-85 decreased the expression of α-SMA induced by TGF-β1 in HELF cells. In the vivo experiments, a pulmonary fibrosis model was established by administering three intratracheal doses of BLM (1 mg/kg). The BLM-OM85 group was exposed to an aerosol containing 10.5 mg of OM-85 dissolved in 10 mL of sterile PBS on days 42, 44, 46, 49, 51, and 53. BLM-induced pulmonary fibrosis, leading to increased levels of lung hydroxyproline, total cell count, macrophages, neutrophils, lymphocytes, and the expression of TGF-β1 as well as Notch1 and Hes1 in lung tissue, along with fibrosis-associated proteins such as collagen I, collagen III, fibronectin, P21, and α-SMA. Additionally, the Th1 response was suppressed, as evidenced by decreased IFN-γ in the bronchoalveolar lavage fluid (BALF), while the Th2 response was amplified, marked by increased IL-4 levels in BALF. Moreover, morphological assessments showed that BLM caused increased Ashcroft scores, relative collagen content, and an expanded damaged area, as well as an increased optical density (OD) of collagen I. The administration of OM-85 significantly mitigated these effects. These findings suggest that OM-85 holds therapeutic potential for BLM-induced pulmonary fibrosis in female C57 mice, partly due to the inhibition of Notch1 and Hes1 expression and the modulation of the IFN-γ/IL-4 ratio.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.