Pei Zhang, Zhuo Li, Yibo Wei, Yang Chen, Liqiang Dong
{"title":"近距离缓倾斜煤层开采顶板破坏范围及上采可行性分析。","authors":"Pei Zhang, Zhuo Li, Yibo Wei, Yang Chen, Liqiang Dong","doi":"10.1038/s41598-025-89808-1","DOIUrl":null,"url":null,"abstract":"<p><p>In view of the feasibility of upward mining under the influence of repetitive mining for the close-proximity gently inclined coal seams, combined with the engineering geology of the coal seams in the south area of Xin'an Coal Mine, a formula for the depth of rock mass failure above the working face roof was proposed to investigate the continuity and integrity of coal seams 2<sup>-3</sup> after the mining of the underlying coal seams. The characteristics of the overlying rock collapsed and the deformation law of the rock stratum sinking were analyzed through the similar experiments of physical simulation, to prove whether or not it is technically feasible to mine upward for the coal seams. Numerical simulation software is used to simulate the spatial distribution of mining stress field and stress transfer law of rock layer in the process of coal seams mining. The study shows that coal 2<sup>-3</sup> is located within the lower coal seam fissure zone. The rock layer at the bottom of the working face has a certain bearing capacity, and can still maintain good continuity under the influence of repetitive mining. The stress concentration area of coal 3 up-slope mining develops continuously to the upper left rock body, and the peak of stress concentration is getting closer and closer to the coal wall, and the stress of coal 2<sup>-3</sup> bottom plate and coal 2<sup>-3</sup> top plate does not fall back significantly after the peak of stress occurs. The degree of rock fall and damage after mining is small, meeting the conditions required for upward mining. The results of the study provide a reference for the analysis of overburden structure and feasibility assessment under similar coal seams upward mining conditions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5324"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825676/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the roof damage range in close-proximity gently inclined coal seams mining and the feasibility of upward mining.\",\"authors\":\"Pei Zhang, Zhuo Li, Yibo Wei, Yang Chen, Liqiang Dong\",\"doi\":\"10.1038/s41598-025-89808-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In view of the feasibility of upward mining under the influence of repetitive mining for the close-proximity gently inclined coal seams, combined with the engineering geology of the coal seams in the south area of Xin'an Coal Mine, a formula for the depth of rock mass failure above the working face roof was proposed to investigate the continuity and integrity of coal seams 2<sup>-3</sup> after the mining of the underlying coal seams. The characteristics of the overlying rock collapsed and the deformation law of the rock stratum sinking were analyzed through the similar experiments of physical simulation, to prove whether or not it is technically feasible to mine upward for the coal seams. Numerical simulation software is used to simulate the spatial distribution of mining stress field and stress transfer law of rock layer in the process of coal seams mining. The study shows that coal 2<sup>-3</sup> is located within the lower coal seam fissure zone. The rock layer at the bottom of the working face has a certain bearing capacity, and can still maintain good continuity under the influence of repetitive mining. The stress concentration area of coal 3 up-slope mining develops continuously to the upper left rock body, and the peak of stress concentration is getting closer and closer to the coal wall, and the stress of coal 2<sup>-3</sup> bottom plate and coal 2<sup>-3</sup> top plate does not fall back significantly after the peak of stress occurs. The degree of rock fall and damage after mining is small, meeting the conditions required for upward mining. The results of the study provide a reference for the analysis of overburden structure and feasibility assessment under similar coal seams upward mining conditions.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"5324\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825676/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-89808-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89808-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Analysis of the roof damage range in close-proximity gently inclined coal seams mining and the feasibility of upward mining.
In view of the feasibility of upward mining under the influence of repetitive mining for the close-proximity gently inclined coal seams, combined with the engineering geology of the coal seams in the south area of Xin'an Coal Mine, a formula for the depth of rock mass failure above the working face roof was proposed to investigate the continuity and integrity of coal seams 2-3 after the mining of the underlying coal seams. The characteristics of the overlying rock collapsed and the deformation law of the rock stratum sinking were analyzed through the similar experiments of physical simulation, to prove whether or not it is technically feasible to mine upward for the coal seams. Numerical simulation software is used to simulate the spatial distribution of mining stress field and stress transfer law of rock layer in the process of coal seams mining. The study shows that coal 2-3 is located within the lower coal seam fissure zone. The rock layer at the bottom of the working face has a certain bearing capacity, and can still maintain good continuity under the influence of repetitive mining. The stress concentration area of coal 3 up-slope mining develops continuously to the upper left rock body, and the peak of stress concentration is getting closer and closer to the coal wall, and the stress of coal 2-3 bottom plate and coal 2-3 top plate does not fall back significantly after the peak of stress occurs. The degree of rock fall and damage after mining is small, meeting the conditions required for upward mining. The results of the study provide a reference for the analysis of overburden structure and feasibility assessment under similar coal seams upward mining conditions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.