姜黄素-万古霉素治疗对抗耐甲氧西林金黄色葡萄球菌感染的协同潜力:探索解决抗生素耐药性和毒性的新途径。

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES
Microbial drug resistance Pub Date : 2025-03-01 Epub Date: 2025-02-14 DOI:10.1089/mdr.2024.0231
Anupam Guleria, Nida Fatima, Anuj Shukla, Ritu Raj, Chinmoy Sahu, Narayan Prasad, Ashutosh Pathak, Dinesh Kumar
{"title":"姜黄素-万古霉素治疗对抗耐甲氧西林金黄色葡萄球菌感染的协同潜力:探索解决抗生素耐药性和毒性的新途径。","authors":"Anupam Guleria, Nida Fatima, Anuj Shukla, Ritu Raj, Chinmoy Sahu, Narayan Prasad, Ashutosh Pathak, Dinesh Kumar","doi":"10.1089/mdr.2024.0231","DOIUrl":null,"url":null,"abstract":"<p><p>Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections pose serious treatment challenges, particularly in peritoneal dialysis patients due to their increased susceptibility to infections and antibiotic resistance. Vancomycin, a standard antibiotic treatment for MRSA, is currently being compromised due to the evolution of multidrug-resistant microorganisms. Therefore, there is an urgent need for alternative therapeutic strategies to obstruct the increasing antibiotic resistance and bacterial biofilm formation. The present study explores curcumin, a natural bioactive compound possessing antimicrobial and anti-inflammatory properties, as a potential therapeutic for MRSA. The standard optical density method confirmed the antibacterial activity of curcumin against <i>Staphylococcus aureus</i> (MTCC-3160). Furthermore, we investigated the impact of curcumin on bacterial metabolism. Metabolic analysis of <i>S. aureus</i> culture media over a 20-h period revealed that curcumin exerts bacteriostatic effects by inhibiting specific metabolic pathways, potentially linked to energy and sugar metabolism. Furthermore, the synergistic effect of curcumin combined with vancomycin was assessed against 20 clinical MRSA strains using the broth microdilution method. The results demonstrated that curcumin enhanced the antibacterial activity of vancomycin in 17 strains by reducing its minimum inhibitory concentration (MIC) significantly. The MIC of curcumin and vancomycin has been found to decrease significantly when used in combination, with curcumin's MIC decreased to as low as 0.5 µg/mL and vancomycin's MIC to 0.5 µg/mL for all strains. Synergistic effects were seen in 17 out of 20 strains, having fractional inhibitory concentration index values between 0.04 and 0.56. These findings suggest that curcumin-vancomycin combination therapy could offer an effective treatment strategy for MRSA infections which may combat antibiotic resistance and reduce treatment-related toxicity.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"65-74"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Potential of Curcumin-Vancomycin Therapy in Combating Methicillin-Resistant <i>Staphylococcus aureus</i> Infections: Exploring a Novel Approach to Address Antibiotic Resistance and Toxicity.\",\"authors\":\"Anupam Guleria, Nida Fatima, Anuj Shukla, Ritu Raj, Chinmoy Sahu, Narayan Prasad, Ashutosh Pathak, Dinesh Kumar\",\"doi\":\"10.1089/mdr.2024.0231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections pose serious treatment challenges, particularly in peritoneal dialysis patients due to their increased susceptibility to infections and antibiotic resistance. Vancomycin, a standard antibiotic treatment for MRSA, is currently being compromised due to the evolution of multidrug-resistant microorganisms. Therefore, there is an urgent need for alternative therapeutic strategies to obstruct the increasing antibiotic resistance and bacterial biofilm formation. The present study explores curcumin, a natural bioactive compound possessing antimicrobial and anti-inflammatory properties, as a potential therapeutic for MRSA. The standard optical density method confirmed the antibacterial activity of curcumin against <i>Staphylococcus aureus</i> (MTCC-3160). Furthermore, we investigated the impact of curcumin on bacterial metabolism. Metabolic analysis of <i>S. aureus</i> culture media over a 20-h period revealed that curcumin exerts bacteriostatic effects by inhibiting specific metabolic pathways, potentially linked to energy and sugar metabolism. Furthermore, the synergistic effect of curcumin combined with vancomycin was assessed against 20 clinical MRSA strains using the broth microdilution method. The results demonstrated that curcumin enhanced the antibacterial activity of vancomycin in 17 strains by reducing its minimum inhibitory concentration (MIC) significantly. The MIC of curcumin and vancomycin has been found to decrease significantly when used in combination, with curcumin's MIC decreased to as low as 0.5 µg/mL and vancomycin's MIC to 0.5 µg/mL for all strains. Synergistic effects were seen in 17 out of 20 strains, having fractional inhibitory concentration index values between 0.04 and 0.56. These findings suggest that curcumin-vancomycin combination therapy could offer an effective treatment strategy for MRSA infections which may combat antibiotic resistance and reduce treatment-related toxicity.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"65-74\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2024.0231\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

耐甲氧西林金黄色葡萄球菌(MRSA)感染带来了严重的治疗挑战,特别是在腹膜透析患者中,由于他们对感染的易感性和抗生素耐药性增加。万古霉素是耐甲氧西林金黄色葡萄球菌的标准抗生素治疗方法,由于多重耐药微生物的进化,目前正在受到损害。因此,迫切需要替代治疗策略来阻止抗生素耐药性的增加和细菌生物膜的形成。本研究探索姜黄素,一种具有抗菌和抗炎特性的天然生物活性化合物,作为MRSA的潜在治疗药物。标准光密度法证实了姜黄素对金黄色葡萄球菌(MTCC-3160)的抑菌活性。此外,我们还研究了姜黄素对细菌代谢的影响。金黄色葡萄球菌培养基在20小时内的代谢分析表明,姜黄素通过抑制特定的代谢途径发挥抑菌作用,可能与能量和糖代谢有关。采用微量肉汤稀释法评价姜黄素联合万古霉素对20株临床MRSA的增效作用。结果表明,姜黄素通过显著降低万古霉素的最低抑菌浓度(MIC),增强了17株菌株对万古霉素的抑菌活性。姜黄素和万古霉素联合使用时,其MIC显著降低,所有菌株姜黄素的MIC低至0.5µg/mL,万古霉素的MIC低至0.5µg/mL。20株菌株中有17株具有协同效应,其分数抑制浓度指数在0.04 ~ 0.56之间。这些发现表明,姜黄素-万古霉素联合治疗可以为MRSA感染提供有效的治疗策略,可以对抗抗生素耐药性并减少治疗相关的毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Potential of Curcumin-Vancomycin Therapy in Combating Methicillin-Resistant Staphylococcus aureus Infections: Exploring a Novel Approach to Address Antibiotic Resistance and Toxicity.

Methicillin-resistant Staphylococcus aureus (MRSA) infections pose serious treatment challenges, particularly in peritoneal dialysis patients due to their increased susceptibility to infections and antibiotic resistance. Vancomycin, a standard antibiotic treatment for MRSA, is currently being compromised due to the evolution of multidrug-resistant microorganisms. Therefore, there is an urgent need for alternative therapeutic strategies to obstruct the increasing antibiotic resistance and bacterial biofilm formation. The present study explores curcumin, a natural bioactive compound possessing antimicrobial and anti-inflammatory properties, as a potential therapeutic for MRSA. The standard optical density method confirmed the antibacterial activity of curcumin against Staphylococcus aureus (MTCC-3160). Furthermore, we investigated the impact of curcumin on bacterial metabolism. Metabolic analysis of S. aureus culture media over a 20-h period revealed that curcumin exerts bacteriostatic effects by inhibiting specific metabolic pathways, potentially linked to energy and sugar metabolism. Furthermore, the synergistic effect of curcumin combined with vancomycin was assessed against 20 clinical MRSA strains using the broth microdilution method. The results demonstrated that curcumin enhanced the antibacterial activity of vancomycin in 17 strains by reducing its minimum inhibitory concentration (MIC) significantly. The MIC of curcumin and vancomycin has been found to decrease significantly when used in combination, with curcumin's MIC decreased to as low as 0.5 µg/mL and vancomycin's MIC to 0.5 µg/mL for all strains. Synergistic effects were seen in 17 out of 20 strains, having fractional inhibitory concentration index values between 0.04 and 0.56. These findings suggest that curcumin-vancomycin combination therapy could offer an effective treatment strategy for MRSA infections which may combat antibiotic resistance and reduce treatment-related toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信