{"title":"利用聚偏二氟乙烯(PVDF)膜乳化法制备负载黄芩苷的单分散聚己内酯(PCL)微球,用于真皮成纤维细胞的伤口愈合。","authors":"Wenwei Zhong, Xiang Cao, Haoran Zeng, Manqun Tang, Guizhen Li, Jia Xiong, Yunong Wang, Liwei Guo, Jing Ji","doi":"10.1177/08853282251321259","DOIUrl":null,"url":null,"abstract":"<p><p>The development of injectable bio-stimulating polycaprolactone (PCL) microspheres for wound healing has strict requirement on size and morphology control, particularly favoring microspheres within the range between 20-50 µm. PCL microspheres with smaller sizes are phagocyted at rapid rate while larger microspheres could cause inflammation. Homogenization can be regarded as an irreversible process to generate microspheres of particular size range while it still remains as the most common approach for microspheres production. Membrane emulsification technology shows great potential in fine tailoring of microspheres while still holds promising ability for scale-up production. Membranes with uniform large pores and dual hydrophilicity might be capable of the production of large microspheres via emulsification with tailorable size distribution. The aim of this study is to verify the feasibility of PVDF membranes with large pores on the generation of PCL microspheres via the combined crystallization diffusion (CCD) approach. The effect of dope solution concentration and PVDF molecular weights on membrane morphologies and the corresponding microspheres characteristics were investigated. Results showed that concentration of 20 wt% produced microspheres at desirable size of 24.14 µm and the optimal span of 0.53. Microspheres with narrow distribution showed the highest drug loading efficiency of baicalin at 8.42 %. The baicalin loaded PCL microspheres presented gradual release of drug release over 33-day of in vitro testing and significantly improved cell growth rate of 111.67 % as compared to the ones prepared by homogenization approach. The wound healing ability was enhanced after the treatment of baicalin-loaded PCL microspheres as compared to empty loaded PCL microspheres.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1143-1155"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baicalin loaded monodispersed polycaprolactone (PCL) microspheres preparation by polyvinylidene fluoride (PVDF) membrane emulsification for wound healing in dermal fibroblasts.\",\"authors\":\"Wenwei Zhong, Xiang Cao, Haoran Zeng, Manqun Tang, Guizhen Li, Jia Xiong, Yunong Wang, Liwei Guo, Jing Ji\",\"doi\":\"10.1177/08853282251321259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of injectable bio-stimulating polycaprolactone (PCL) microspheres for wound healing has strict requirement on size and morphology control, particularly favoring microspheres within the range between 20-50 µm. PCL microspheres with smaller sizes are phagocyted at rapid rate while larger microspheres could cause inflammation. Homogenization can be regarded as an irreversible process to generate microspheres of particular size range while it still remains as the most common approach for microspheres production. Membrane emulsification technology shows great potential in fine tailoring of microspheres while still holds promising ability for scale-up production. Membranes with uniform large pores and dual hydrophilicity might be capable of the production of large microspheres via emulsification with tailorable size distribution. The aim of this study is to verify the feasibility of PVDF membranes with large pores on the generation of PCL microspheres via the combined crystallization diffusion (CCD) approach. The effect of dope solution concentration and PVDF molecular weights on membrane morphologies and the corresponding microspheres characteristics were investigated. Results showed that concentration of 20 wt% produced microspheres at desirable size of 24.14 µm and the optimal span of 0.53. Microspheres with narrow distribution showed the highest drug loading efficiency of baicalin at 8.42 %. The baicalin loaded PCL microspheres presented gradual release of drug release over 33-day of in vitro testing and significantly improved cell growth rate of 111.67 % as compared to the ones prepared by homogenization approach. The wound healing ability was enhanced after the treatment of baicalin-loaded PCL microspheres as compared to empty loaded PCL microspheres.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"1143-1155\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251321259\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251321259","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Baicalin loaded monodispersed polycaprolactone (PCL) microspheres preparation by polyvinylidene fluoride (PVDF) membrane emulsification for wound healing in dermal fibroblasts.
The development of injectable bio-stimulating polycaprolactone (PCL) microspheres for wound healing has strict requirement on size and morphology control, particularly favoring microspheres within the range between 20-50 µm. PCL microspheres with smaller sizes are phagocyted at rapid rate while larger microspheres could cause inflammation. Homogenization can be regarded as an irreversible process to generate microspheres of particular size range while it still remains as the most common approach for microspheres production. Membrane emulsification technology shows great potential in fine tailoring of microspheres while still holds promising ability for scale-up production. Membranes with uniform large pores and dual hydrophilicity might be capable of the production of large microspheres via emulsification with tailorable size distribution. The aim of this study is to verify the feasibility of PVDF membranes with large pores on the generation of PCL microspheres via the combined crystallization diffusion (CCD) approach. The effect of dope solution concentration and PVDF molecular weights on membrane morphologies and the corresponding microspheres characteristics were investigated. Results showed that concentration of 20 wt% produced microspheres at desirable size of 24.14 µm and the optimal span of 0.53. Microspheres with narrow distribution showed the highest drug loading efficiency of baicalin at 8.42 %. The baicalin loaded PCL microspheres presented gradual release of drug release over 33-day of in vitro testing and significantly improved cell growth rate of 111.67 % as compared to the ones prepared by homogenization approach. The wound healing ability was enhanced after the treatment of baicalin-loaded PCL microspheres as compared to empty loaded PCL microspheres.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.