工程抗微生物肽抑制SW620人结肠癌细胞活力,促进细胞凋亡,诱导细胞周期阻滞

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sheema Hashem, Ajaz A Bhat, Sabah Nisar, Shahab Uddin, Maysaloun Merhi, Jericha M Mateo, Kirti S Prabhu, Lama Soubra, Carlos André Dos Santos Silva, Ana Maria Benko-Iseppon, Lívia Maria Batista Vilela, Marx Oliveira de Lima, Juliana Georgia da Silva, Mohammad Haris, Muhammad Suleman, Sergio Crovella, Haissam Abou Saleh
{"title":"工程抗微生物肽抑制SW620人结肠癌细胞活力,促进细胞凋亡,诱导细胞周期阻滞","authors":"Sheema Hashem, Ajaz A Bhat, Sabah Nisar, Shahab Uddin, Maysaloun Merhi, Jericha M Mateo, Kirti S Prabhu, Lama Soubra, Carlos André Dos Santos Silva, Ana Maria Benko-Iseppon, Lívia Maria Batista Vilela, Marx Oliveira de Lima, Juliana Georgia da Silva, Mohammad Haris, Muhammad Suleman, Sergio Crovella, Haissam Abou Saleh","doi":"10.2174/0113892037363898250110053529","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) is one of the most common malignancies worldwide, and despite advances in treatment, there remains a critical need for novel therapeutic approaches. Recently, anti-microbial peptides (AMPs) have gained attention for their potential use in cancer therapy due to their selective cytotoxicity towards cancer cells.</p><p><strong>Objective: </strong>This study aims to evaluate the anti-cancer potential of two computationally engineered anti-microbial peptides (EAMPs) in SW620, SW480, and HCT116 colon cancer cells and the normal colon epithelial cell line CCD 841, focusing on their effects on cell proliferation, apoptosis, and DNA damage.</p><p><strong>Method: </strong>Cell proliferation and survival were measured using the CellTiter-Glo Luminescence and clonogenic assays. DNA damage was assessed through the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Flow cytometry was used to examine cell apoptosis, cell cycle distribution, and mitochondrial membrane potential in SW620 cells.</p><p><strong>Results: </strong>EAMPs inhibited CRC cell proliferation in a dose-dependent manner, with minimal toxicity observed in normal colon epithelial cells. In SW620 cells, EAMPs induced DNA damage, resulting in cell cycle arrest at the S/G2 phase, apoptosis, and a reduction in mitochondrial membrane potential. The proliferation results were confirmed in SW480 and HCT116 CRC cell lines.</p><p><strong>Conclusion: </strong>Our findings revealed that EAMPs exhibited significant anti-cancer activity against CRC cells in vitro while sparing normal epithelial cells. These results suggest that EAMPs may offer a potential therapeutic approach for colorectal cancer and warrant further investigation.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered Anti-Microbial Peptides Inhibit Cell Viability, Promote Apoptosis, and Induce Cell Cycle Arrest in SW620 Human Colon Adenocarcinoma Cells.\",\"authors\":\"Sheema Hashem, Ajaz A Bhat, Sabah Nisar, Shahab Uddin, Maysaloun Merhi, Jericha M Mateo, Kirti S Prabhu, Lama Soubra, Carlos André Dos Santos Silva, Ana Maria Benko-Iseppon, Lívia Maria Batista Vilela, Marx Oliveira de Lima, Juliana Georgia da Silva, Mohammad Haris, Muhammad Suleman, Sergio Crovella, Haissam Abou Saleh\",\"doi\":\"10.2174/0113892037363898250110053529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Colorectal cancer (CRC) is one of the most common malignancies worldwide, and despite advances in treatment, there remains a critical need for novel therapeutic approaches. Recently, anti-microbial peptides (AMPs) have gained attention for their potential use in cancer therapy due to their selective cytotoxicity towards cancer cells.</p><p><strong>Objective: </strong>This study aims to evaluate the anti-cancer potential of two computationally engineered anti-microbial peptides (EAMPs) in SW620, SW480, and HCT116 colon cancer cells and the normal colon epithelial cell line CCD 841, focusing on their effects on cell proliferation, apoptosis, and DNA damage.</p><p><strong>Method: </strong>Cell proliferation and survival were measured using the CellTiter-Glo Luminescence and clonogenic assays. DNA damage was assessed through the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Flow cytometry was used to examine cell apoptosis, cell cycle distribution, and mitochondrial membrane potential in SW620 cells.</p><p><strong>Results: </strong>EAMPs inhibited CRC cell proliferation in a dose-dependent manner, with minimal toxicity observed in normal colon epithelial cells. In SW620 cells, EAMPs induced DNA damage, resulting in cell cycle arrest at the S/G2 phase, apoptosis, and a reduction in mitochondrial membrane potential. The proliferation results were confirmed in SW480 and HCT116 CRC cell lines.</p><p><strong>Conclusion: </strong>Our findings revealed that EAMPs exhibited significant anti-cancer activity against CRC cells in vitro while sparing normal epithelial cells. These results suggest that EAMPs may offer a potential therapeutic approach for colorectal cancer and warrant further investigation.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037363898250110053529\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037363898250110053529","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:结直肠癌(CRC)是世界范围内最常见的恶性肿瘤之一,尽管治疗取得了进展,但仍然迫切需要新的治疗方法。近年来,抗微生物肽(AMPs)因其对癌细胞具有选择性的细胞毒性而在癌症治疗中具有潜在的应用前景。目的:研究两种计算工程抗微生物肽(eamp)在SW620、SW480和HCT116结肠癌细胞和正常结肠上皮细胞系CCD 841中的抗癌潜力,重点研究其对细胞增殖、凋亡和DNA损伤的影响。方法:采用细胞滴度荧光法和致克隆法测定细胞增殖和存活。通过末端脱氧核苷酸转移酶dUTP缺口末端标记(TUNEL)法评估DNA损伤。流式细胞术检测SW620细胞凋亡、细胞周期分布和线粒体膜电位。结果:EAMPs以剂量依赖的方式抑制结直肠癌细胞增殖,对正常结肠上皮细胞的毒性很小。在SW620细胞中,eamp诱导DNA损伤,导致细胞周期阻滞在S/G2期、细胞凋亡和线粒体膜电位降低。在SW480和HCT116 CRC细胞株中证实了增殖结果。结论:我们的研究结果表明,eamp在体外对结直肠癌细胞具有显著的抗癌活性,而对正常上皮细胞则有保护作用。这些结果表明,eamp可能为结直肠癌提供了一种潜在的治疗方法,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineered Anti-Microbial Peptides Inhibit Cell Viability, Promote Apoptosis, and Induce Cell Cycle Arrest in SW620 Human Colon Adenocarcinoma Cells.

Background: Colorectal cancer (CRC) is one of the most common malignancies worldwide, and despite advances in treatment, there remains a critical need for novel therapeutic approaches. Recently, anti-microbial peptides (AMPs) have gained attention for their potential use in cancer therapy due to their selective cytotoxicity towards cancer cells.

Objective: This study aims to evaluate the anti-cancer potential of two computationally engineered anti-microbial peptides (EAMPs) in SW620, SW480, and HCT116 colon cancer cells and the normal colon epithelial cell line CCD 841, focusing on their effects on cell proliferation, apoptosis, and DNA damage.

Method: Cell proliferation and survival were measured using the CellTiter-Glo Luminescence and clonogenic assays. DNA damage was assessed through the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Flow cytometry was used to examine cell apoptosis, cell cycle distribution, and mitochondrial membrane potential in SW620 cells.

Results: EAMPs inhibited CRC cell proliferation in a dose-dependent manner, with minimal toxicity observed in normal colon epithelial cells. In SW620 cells, EAMPs induced DNA damage, resulting in cell cycle arrest at the S/G2 phase, apoptosis, and a reduction in mitochondrial membrane potential. The proliferation results were confirmed in SW480 and HCT116 CRC cell lines.

Conclusion: Our findings revealed that EAMPs exhibited significant anti-cancer activity against CRC cells in vitro while sparing normal epithelial cells. These results suggest that EAMPs may offer a potential therapeutic approach for colorectal cancer and warrant further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信