与基质体相关的基因转录激活是衰老内皮细胞的共同特征。

IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY
Ignacia González, Sebastián B Arredondo, Rodrigo Maldonado-Agurto
{"title":"与基质体相关的基因转录激活是衰老内皮细胞的共同特征。","authors":"Ignacia González, Sebastián B Arredondo, Rodrigo Maldonado-Agurto","doi":"10.1007/s10522-025-10191-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is a stable cell cycle arrest that occurs in response to various stress stimuli and affects multiple cell types, including endothelial cells (ECs). Senescent cells accumulate with age, and their removal has been linked to reduced age-related diseases. However, some senescent cells are important for tissue homeostasis. Therefore, understanding the diversity of senescent cells in a cell-type-specific manner and their underlying molecular mechanisms is essential. Senescence impairs key ECs functions which are necessary for vascular homeostasis, leading to endothelial dysfunction and age-related vascular diseases. In order to gain insights into these mechanisms, we analyzed publicly available RNA-seq datasets to identify gene expression changes in senescent ECs induced by doxorubicin, irradiation, and replication exhaustion. While only a few genes were consistently differentially expressed across all conditions, some gene ontologies (GO) were shared. Among these, our analysis focused on validating the expression of genes associated with the matrisome, which includes genes encoding for extracellular matrix (ECM) structural components and ECM-associated proteins, in a doxorubicin-induced senescence model. Our results show that the matrisome transcriptome undergoes significant remodeling in senescent endothelial cells, regardless of the specific inducers of senescence, highlighting the importance of understanding how ECM alterations affect senescence.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 2","pages":"59"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825616/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptional activation of genes associated with the matrisome is a common feature of senescent endothelial cells.\",\"authors\":\"Ignacia González, Sebastián B Arredondo, Rodrigo Maldonado-Agurto\",\"doi\":\"10.1007/s10522-025-10191-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular senescence is a stable cell cycle arrest that occurs in response to various stress stimuli and affects multiple cell types, including endothelial cells (ECs). Senescent cells accumulate with age, and their removal has been linked to reduced age-related diseases. However, some senescent cells are important for tissue homeostasis. Therefore, understanding the diversity of senescent cells in a cell-type-specific manner and their underlying molecular mechanisms is essential. Senescence impairs key ECs functions which are necessary for vascular homeostasis, leading to endothelial dysfunction and age-related vascular diseases. In order to gain insights into these mechanisms, we analyzed publicly available RNA-seq datasets to identify gene expression changes in senescent ECs induced by doxorubicin, irradiation, and replication exhaustion. While only a few genes were consistently differentially expressed across all conditions, some gene ontologies (GO) were shared. Among these, our analysis focused on validating the expression of genes associated with the matrisome, which includes genes encoding for extracellular matrix (ECM) structural components and ECM-associated proteins, in a doxorubicin-induced senescence model. Our results show that the matrisome transcriptome undergoes significant remodeling in senescent endothelial cells, regardless of the specific inducers of senescence, highlighting the importance of understanding how ECM alterations affect senescence.</p>\",\"PeriodicalId\":8909,\"journal\":{\"name\":\"Biogerontology\",\"volume\":\"26 2\",\"pages\":\"59\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825616/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogerontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10522-025-10191-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10191-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞衰老是一种稳定的细胞周期停滞,发生在各种应激刺激下,影响多种细胞类型,包括内皮细胞(ECs)。衰老细胞随着年龄的增长而积累,它们的清除与减少与年龄有关的疾病有关。然而,一些衰老细胞对组织稳态是重要的。因此,以细胞类型特异性的方式了解衰老细胞的多样性及其潜在的分子机制是必要的。衰老损害了内皮细胞维持血管稳态所必需的关键功能,导致内皮功能障碍和与年龄相关的血管疾病。为了深入了解这些机制,我们分析了公开可用的RNA-seq数据集,以确定阿霉素、辐射和复制衰竭诱导的衰老ec中的基因表达变化。虽然只有少数基因在所有条件下一致地表达差异,但一些基因本体(GO)是共享的。其中,我们的分析集中在验证与基质相关的基因的表达,其中包括编码细胞外基质(ECM)结构成分和ECM相关蛋白的基因,在阿霉素诱导的衰老模型中。我们的研究结果表明,在衰老的内皮细胞中,无论衰老的具体诱导剂是什么,基质转录组都经历了显著的重塑,这突出了理解ECM改变如何影响衰老的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptional activation of genes associated with the matrisome is a common feature of senescent endothelial cells.

Cellular senescence is a stable cell cycle arrest that occurs in response to various stress stimuli and affects multiple cell types, including endothelial cells (ECs). Senescent cells accumulate with age, and their removal has been linked to reduced age-related diseases. However, some senescent cells are important for tissue homeostasis. Therefore, understanding the diversity of senescent cells in a cell-type-specific manner and their underlying molecular mechanisms is essential. Senescence impairs key ECs functions which are necessary for vascular homeostasis, leading to endothelial dysfunction and age-related vascular diseases. In order to gain insights into these mechanisms, we analyzed publicly available RNA-seq datasets to identify gene expression changes in senescent ECs induced by doxorubicin, irradiation, and replication exhaustion. While only a few genes were consistently differentially expressed across all conditions, some gene ontologies (GO) were shared. Among these, our analysis focused on validating the expression of genes associated with the matrisome, which includes genes encoding for extracellular matrix (ECM) structural components and ECM-associated proteins, in a doxorubicin-induced senescence model. Our results show that the matrisome transcriptome undergoes significant remodeling in senescent endothelial cells, regardless of the specific inducers of senescence, highlighting the importance of understanding how ECM alterations affect senescence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogerontology
Biogerontology 医学-老年医学
CiteScore
8.00
自引率
4.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments. Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信