Xin-Yi Zhang, Dr. Hang Yin, Dr. Cong-Cong Dang, Hong Nie, Zhi-Xiong Huang, Dr. Shuo-Hang Zheng, Miao Du, Dr. Zhen-Yi Gu, Dr. Jun-Ming Cao, Prof. Xing-Long Wu
{"title":"在酸性析氧中解锁增强的催化稳定性:高电流密度下PEM应用的结构见解。","authors":"Xin-Yi Zhang, Dr. Hang Yin, Dr. Cong-Cong Dang, Hong Nie, Zhi-Xiong Huang, Dr. Shuo-Hang Zheng, Miao Du, Dr. Zhen-Yi Gu, Dr. Jun-Ming Cao, Prof. Xing-Long Wu","doi":"10.1002/anie.202425569","DOIUrl":null,"url":null,"abstract":"<p>In proton exchange membrane water electrolysis (PEMWE), catalysts for acidic oxygen evolution reaction (OER) that demonstrate high current density and stability are essential. Herein, we synthesized La-doped RuO<sub>2</sub> (La-RuO<sub>2</sub>@TM) nanorod composite catalysts in situ on titanium mesh (TM) using a one-step low-temperature pyrolysis method. La-RuO<sub>2</sub>@TM displays excellent catalytic performance (1.533 V at 100 mA cm<sup>−2</sup>) and remarkable stability, showing no significant degradation in performance over 450 hours of operation. Density functional theory (DFT) calculations indicate that the formation of the La-O−Ru local structure modulates the adsorption strength of reaction intermediates, alleviates metal (Ru) leaching, and reduces oxygen loss, significantly enhancing the material‘s durability in acidic OER. The PEM electrolyzer utilizing La-RuO<sub>2</sub>@TM operates at 1.815 V with a current density of 1.0 A cm<sup>−2</sup>, maintaining stable performance for 120 h at 60 °C. This study offers valuable insights for designing efficient and durable acidic OER catalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 17","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Enhanced Catalysis Stability in Acidic Oxygen Evolution: Structural Insights for PEM Applications under High-Current Density\",\"authors\":\"Xin-Yi Zhang, Dr. Hang Yin, Dr. Cong-Cong Dang, Hong Nie, Zhi-Xiong Huang, Dr. Shuo-Hang Zheng, Miao Du, Dr. Zhen-Yi Gu, Dr. Jun-Ming Cao, Prof. Xing-Long Wu\",\"doi\":\"10.1002/anie.202425569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In proton exchange membrane water electrolysis (PEMWE), catalysts for acidic oxygen evolution reaction (OER) that demonstrate high current density and stability are essential. Herein, we synthesized La-doped RuO<sub>2</sub> (La-RuO<sub>2</sub>@TM) nanorod composite catalysts in situ on titanium mesh (TM) using a one-step low-temperature pyrolysis method. La-RuO<sub>2</sub>@TM displays excellent catalytic performance (1.533 V at 100 mA cm<sup>−2</sup>) and remarkable stability, showing no significant degradation in performance over 450 hours of operation. Density functional theory (DFT) calculations indicate that the formation of the La-O−Ru local structure modulates the adsorption strength of reaction intermediates, alleviates metal (Ru) leaching, and reduces oxygen loss, significantly enhancing the material‘s durability in acidic OER. The PEM electrolyzer utilizing La-RuO<sub>2</sub>@TM operates at 1.815 V with a current density of 1.0 A cm<sup>−2</sup>, maintaining stable performance for 120 h at 60 °C. This study offers valuable insights for designing efficient and durable acidic OER catalysts.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 17\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202425569\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202425569","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在质子交换膜电解(PEMWE)中,高电流密度和稳定性的酸性析氧反应(OER)催化剂是必不可少的。本文采用一步低温热解法在钛网(TM)上原位合成了掺la的RuO2 (La-RuO2@TM)纳米棒复合催化剂。La-RuO2@TM具有优异的催化性能(在100 mA cm-2时1.533 V)和卓越的稳定性,在450小时的运行中没有明显的性能下降。密度泛函理论(DFT)计算表明,La-O-Ru局部结构的形成调节了反应中间体的吸附强度,减轻了金属(Ru)的浸出,减少了氧损失,显著提高了材料在酸性OER中的耐久性。PEM电解槽利用La-RuO2@TM在1.815 V下工作,电流密度为1.0 a cm-2,在60°C下保持120小时的稳定性能。该研究为设计高效耐用的酸性OER催化剂提供了有价值的见解。
Unlocking Enhanced Catalysis Stability in Acidic Oxygen Evolution: Structural Insights for PEM Applications under High-Current Density
In proton exchange membrane water electrolysis (PEMWE), catalysts for acidic oxygen evolution reaction (OER) that demonstrate high current density and stability are essential. Herein, we synthesized La-doped RuO2 (La-RuO2@TM) nanorod composite catalysts in situ on titanium mesh (TM) using a one-step low-temperature pyrolysis method. La-RuO2@TM displays excellent catalytic performance (1.533 V at 100 mA cm−2) and remarkable stability, showing no significant degradation in performance over 450 hours of operation. Density functional theory (DFT) calculations indicate that the formation of the La-O−Ru local structure modulates the adsorption strength of reaction intermediates, alleviates metal (Ru) leaching, and reduces oxygen loss, significantly enhancing the material‘s durability in acidic OER. The PEM electrolyzer utilizing La-RuO2@TM operates at 1.815 V with a current density of 1.0 A cm−2, maintaining stable performance for 120 h at 60 °C. This study offers valuable insights for designing efficient and durable acidic OER catalysts.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.