Dongwoo Kim, Chaehyun Kim, So Eun Lee, Sangwoo Kim, Sang-Il Lee, Min Hee Park, Mingyo Kim, Daekyung Sung, Kangwon Lee
{"title":"负载硫柳氮吡啶的二茂铁纳米颗粒的研制及其在滑膜增生3D模型中的抗风湿作用评价。","authors":"Dongwoo Kim, Chaehyun Kim, So Eun Lee, Sangwoo Kim, Sang-Il Lee, Min Hee Park, Mingyo Kim, Daekyung Sung, Kangwon Lee","doi":"10.1002/smll.202407813","DOIUrl":null,"url":null,"abstract":"<p>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation, synovial hyperplasia, and bone and cartilage destruction, which significantly impairs physical function and quality of life. Disease-modifying antirheumatic drugs, such as sulfasalazine (SSZ), are crucial for altering the course and progression of RA; however, their clinical use is hampered by poor water solubility and lack of specificity for the reactive oxygen species (ROS)-rich environment typical of RA. To overcome these challenges, ROS-sensitive SSZ-loaded ferrocene nanoparticles are developed. The nanoparticles facilitate enhanced solubility and stability of SSZ and particularly enable precision targeting through the distinctive redox properties of ferrocene. Using a 3D synovial hyperplasia model with fibroblast-like synoviocytes derive from RA patients and validate at both the protein and gene levels, these nanoparticles significantly reduce lactate dehydrogenase, ROS, and inflammatory cytokine levels. Further validation using a collagen-induced arthritis model demonstrates therapeutic efficacy and cytokine modulation in vivo. These findings highlight the potential of ferrocene nanoparticles as a novel and effective therapeutic strategy for RA, offering improved drug delivery and reduced systemic toxicity.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 10","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of ROS-Sensitive Sulfasalazine-Loaded Ferrocene Nanoparticles and Evaluation of Their Antirheumatic Effects in a 3D Synovial Hyperplasia Model\",\"authors\":\"Dongwoo Kim, Chaehyun Kim, So Eun Lee, Sangwoo Kim, Sang-Il Lee, Min Hee Park, Mingyo Kim, Daekyung Sung, Kangwon Lee\",\"doi\":\"10.1002/smll.202407813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation, synovial hyperplasia, and bone and cartilage destruction, which significantly impairs physical function and quality of life. Disease-modifying antirheumatic drugs, such as sulfasalazine (SSZ), are crucial for altering the course and progression of RA; however, their clinical use is hampered by poor water solubility and lack of specificity for the reactive oxygen species (ROS)-rich environment typical of RA. To overcome these challenges, ROS-sensitive SSZ-loaded ferrocene nanoparticles are developed. The nanoparticles facilitate enhanced solubility and stability of SSZ and particularly enable precision targeting through the distinctive redox properties of ferrocene. Using a 3D synovial hyperplasia model with fibroblast-like synoviocytes derive from RA patients and validate at both the protein and gene levels, these nanoparticles significantly reduce lactate dehydrogenase, ROS, and inflammatory cytokine levels. Further validation using a collagen-induced arthritis model demonstrates therapeutic efficacy and cytokine modulation in vivo. These findings highlight the potential of ferrocene nanoparticles as a novel and effective therapeutic strategy for RA, offering improved drug delivery and reduced systemic toxicity.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 10\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202407813\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202407813","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of ROS-Sensitive Sulfasalazine-Loaded Ferrocene Nanoparticles and Evaluation of Their Antirheumatic Effects in a 3D Synovial Hyperplasia Model
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation, synovial hyperplasia, and bone and cartilage destruction, which significantly impairs physical function and quality of life. Disease-modifying antirheumatic drugs, such as sulfasalazine (SSZ), are crucial for altering the course and progression of RA; however, their clinical use is hampered by poor water solubility and lack of specificity for the reactive oxygen species (ROS)-rich environment typical of RA. To overcome these challenges, ROS-sensitive SSZ-loaded ferrocene nanoparticles are developed. The nanoparticles facilitate enhanced solubility and stability of SSZ and particularly enable precision targeting through the distinctive redox properties of ferrocene. Using a 3D synovial hyperplasia model with fibroblast-like synoviocytes derive from RA patients and validate at both the protein and gene levels, these nanoparticles significantly reduce lactate dehydrogenase, ROS, and inflammatory cytokine levels. Further validation using a collagen-induced arthritis model demonstrates therapeutic efficacy and cytokine modulation in vivo. These findings highlight the potential of ferrocene nanoparticles as a novel and effective therapeutic strategy for RA, offering improved drug delivery and reduced systemic toxicity.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.