Harriet R Fowler, Riley O'Shea, Joseph Sefton, Shaun C Howard, Benjamin W Muir, Robert A Stockman, Vincenzo Taresco, Derek J Irvine
{"title":"通过共振声混合快速、高度可持续的开环聚合。","authors":"Harriet R Fowler, Riley O'Shea, Joseph Sefton, Shaun C Howard, Benjamin W Muir, Robert A Stockman, Vincenzo Taresco, Derek J Irvine","doi":"10.1021/acssuschemeng.4c06330","DOIUrl":null,"url":null,"abstract":"<p><p>Reported herein is the first combination of resonant acoustic mixing (RAM) and controlled ring-opening polymerization (ROP) to deliver fully sustainable, end-functionalized, biodegradable polymers via a manufacturing route with a much-reduced environmental impact. This includes the successful use of agriculturally sourced functionalized initiators (terpene alcohols) in ROP synthesis of cyclic esters to generate an array of novel, biodegradable polyesters applicable to numerous biomedical applications, such as drug delivery. Furthermore, RAM was utilized as a novel mixing technique, resulting in a synthetic process that was conducted: (a) with minimal use of toxic, flammable, costly, and environmentally detrimental solvents, (b) in the absence of organometallic catalysts, and (c) with significantly shorter ROP reaction times and temperatures. Consequent comparison with conventional magnetic stirring or sonication-based mixing methods showed that RAM allowed the more facile, kilogram-scale synthesis of polyesters via reactions conducted at room temperature rather than 150 °C and without the need for a metal catalyst. As a proof of concept, the polymers were used to encapsulate bovine serum albumin as a model protein, and its release was measured using an automated, high-throughput protein assay. This study demonstrated that the headgroup chemistry appears to affect the release rate of protein from the polymers.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 5","pages":"1916-1926"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid, Highly Sustainable Ring-Opening Polymerization via Resonant Acoustic Mixing.\",\"authors\":\"Harriet R Fowler, Riley O'Shea, Joseph Sefton, Shaun C Howard, Benjamin W Muir, Robert A Stockman, Vincenzo Taresco, Derek J Irvine\",\"doi\":\"10.1021/acssuschemeng.4c06330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reported herein is the first combination of resonant acoustic mixing (RAM) and controlled ring-opening polymerization (ROP) to deliver fully sustainable, end-functionalized, biodegradable polymers via a manufacturing route with a much-reduced environmental impact. This includes the successful use of agriculturally sourced functionalized initiators (terpene alcohols) in ROP synthesis of cyclic esters to generate an array of novel, biodegradable polyesters applicable to numerous biomedical applications, such as drug delivery. Furthermore, RAM was utilized as a novel mixing technique, resulting in a synthetic process that was conducted: (a) with minimal use of toxic, flammable, costly, and environmentally detrimental solvents, (b) in the absence of organometallic catalysts, and (c) with significantly shorter ROP reaction times and temperatures. Consequent comparison with conventional magnetic stirring or sonication-based mixing methods showed that RAM allowed the more facile, kilogram-scale synthesis of polyesters via reactions conducted at room temperature rather than 150 °C and without the need for a metal catalyst. As a proof of concept, the polymers were used to encapsulate bovine serum albumin as a model protein, and its release was measured using an automated, high-throughput protein assay. This study demonstrated that the headgroup chemistry appears to affect the release rate of protein from the polymers.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 5\",\"pages\":\"1916-1926\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c06330\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c06330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid, Highly Sustainable Ring-Opening Polymerization via Resonant Acoustic Mixing.
Reported herein is the first combination of resonant acoustic mixing (RAM) and controlled ring-opening polymerization (ROP) to deliver fully sustainable, end-functionalized, biodegradable polymers via a manufacturing route with a much-reduced environmental impact. This includes the successful use of agriculturally sourced functionalized initiators (terpene alcohols) in ROP synthesis of cyclic esters to generate an array of novel, biodegradable polyesters applicable to numerous biomedical applications, such as drug delivery. Furthermore, RAM was utilized as a novel mixing technique, resulting in a synthetic process that was conducted: (a) with minimal use of toxic, flammable, costly, and environmentally detrimental solvents, (b) in the absence of organometallic catalysts, and (c) with significantly shorter ROP reaction times and temperatures. Consequent comparison with conventional magnetic stirring or sonication-based mixing methods showed that RAM allowed the more facile, kilogram-scale synthesis of polyesters via reactions conducted at room temperature rather than 150 °C and without the need for a metal catalyst. As a proof of concept, the polymers were used to encapsulate bovine serum albumin as a model protein, and its release was measured using an automated, high-throughput protein assay. This study demonstrated that the headgroup chemistry appears to affect the release rate of protein from the polymers.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.