Daniele Piscitelli, Joy Khayat, Anatol G Feldman, Mindy F Levin
{"title":"脑卒中后上肢痉挛和运动障碍的紧张性拉伸反射阈值和μ as测量的临床意义。","authors":"Daniele Piscitelli, Joy Khayat, Anatol G Feldman, Mindy F Levin","doi":"10.1177/15459683251318689","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>After a central nervous system lesion, the ability to control muscle activation and relaxation in specific joint ranges may be impaired. The underlying mechanism of this sensorimotor impairment is related to a decreased ability to regulate the tonic stretch reflex threshold (TSRT) through descending and peripheral control processes. In dynamics, the reflex threshold and its velocity-sensitivity (μ) describe how movement in specific upper limb (UL) joint ranges is impaired after stroke.</p><p><strong>Objective: </strong>To examine the relationships between measures of elbow flexor impairment using TSRT and μ, and clinical scores of spasticity and motor function. We hypothesized that TSRT and μ would be related to clinical spasticity and motor impairment scores in patients with acute and chronic stroke.</p><p><strong>Methods: </strong>TSRT, μ, and clinical data of the resistance to passive movement (Modified Ashworth Scale) and UL motor function (Fugl-Meyer Assessment [FMA]) were collected from 120 patients. Relationships between variables were determined using simple correlations and multiple regression analysis.</p><p><strong>Results: </strong>TSRT and μ explained 72.0% of the variance in the FMA of the Upper Extremity [FMA-UE] describing only in-synergy and out-of-synergy movements and reflex function. TSRT explained 68.7% of the variance in the total score of the FMA-UE.</p><p><strong>Conclusions: </strong>This study shows for the first time, a significant relationship between deficits in TSRT regulation and μ with UL motor impairment after stroke. TSRT and μ may be valuable clinical biomarkers of sensorimotor impairment for monitoring spontaneous or treatment-induced motor recovery.</p>","PeriodicalId":94158,"journal":{"name":"Neurorehabilitation and neural repair","volume":" ","pages":"15459683251318689"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical Relevance of the Tonic Stretch Reflex Threshold and μ as Measures of Upper Limb Spasticity and Motor Impairment After Stroke.\",\"authors\":\"Daniele Piscitelli, Joy Khayat, Anatol G Feldman, Mindy F Levin\",\"doi\":\"10.1177/15459683251318689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>After a central nervous system lesion, the ability to control muscle activation and relaxation in specific joint ranges may be impaired. The underlying mechanism of this sensorimotor impairment is related to a decreased ability to regulate the tonic stretch reflex threshold (TSRT) through descending and peripheral control processes. In dynamics, the reflex threshold and its velocity-sensitivity (μ) describe how movement in specific upper limb (UL) joint ranges is impaired after stroke.</p><p><strong>Objective: </strong>To examine the relationships between measures of elbow flexor impairment using TSRT and μ, and clinical scores of spasticity and motor function. We hypothesized that TSRT and μ would be related to clinical spasticity and motor impairment scores in patients with acute and chronic stroke.</p><p><strong>Methods: </strong>TSRT, μ, and clinical data of the resistance to passive movement (Modified Ashworth Scale) and UL motor function (Fugl-Meyer Assessment [FMA]) were collected from 120 patients. Relationships between variables were determined using simple correlations and multiple regression analysis.</p><p><strong>Results: </strong>TSRT and μ explained 72.0% of the variance in the FMA of the Upper Extremity [FMA-UE] describing only in-synergy and out-of-synergy movements and reflex function. TSRT explained 68.7% of the variance in the total score of the FMA-UE.</p><p><strong>Conclusions: </strong>This study shows for the first time, a significant relationship between deficits in TSRT regulation and μ with UL motor impairment after stroke. TSRT and μ may be valuable clinical biomarkers of sensorimotor impairment for monitoring spontaneous or treatment-induced motor recovery.</p>\",\"PeriodicalId\":94158,\"journal\":{\"name\":\"Neurorehabilitation and neural repair\",\"volume\":\" \",\"pages\":\"15459683251318689\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurorehabilitation and neural repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15459683251318689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and neural repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15459683251318689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clinical Relevance of the Tonic Stretch Reflex Threshold and μ as Measures of Upper Limb Spasticity and Motor Impairment After Stroke.
Background: After a central nervous system lesion, the ability to control muscle activation and relaxation in specific joint ranges may be impaired. The underlying mechanism of this sensorimotor impairment is related to a decreased ability to regulate the tonic stretch reflex threshold (TSRT) through descending and peripheral control processes. In dynamics, the reflex threshold and its velocity-sensitivity (μ) describe how movement in specific upper limb (UL) joint ranges is impaired after stroke.
Objective: To examine the relationships between measures of elbow flexor impairment using TSRT and μ, and clinical scores of spasticity and motor function. We hypothesized that TSRT and μ would be related to clinical spasticity and motor impairment scores in patients with acute and chronic stroke.
Methods: TSRT, μ, and clinical data of the resistance to passive movement (Modified Ashworth Scale) and UL motor function (Fugl-Meyer Assessment [FMA]) were collected from 120 patients. Relationships between variables were determined using simple correlations and multiple regression analysis.
Results: TSRT and μ explained 72.0% of the variance in the FMA of the Upper Extremity [FMA-UE] describing only in-synergy and out-of-synergy movements and reflex function. TSRT explained 68.7% of the variance in the total score of the FMA-UE.
Conclusions: This study shows for the first time, a significant relationship between deficits in TSRT regulation and μ with UL motor impairment after stroke. TSRT and μ may be valuable clinical biomarkers of sensorimotor impairment for monitoring spontaneous or treatment-induced motor recovery.