人工智能和机器学习在急诊医学分诊中的应用--系统性综述。

Qasem Ahmed Almulihi, Abdulaziz Adel Alquraini, Fatimah Ahmed Ali Almulihi, Abdullah Abdulaziz Alzahid, Saleh Saeed Al Jathnan Al Qahtani, Mohamed Almulhim, Saeed Hussain Saeed Alqhtani, Faisal Mohammed Nafea Alnafea, Saad Ali Saad Mushni, Nasser Abdullah Alaqil, Mohammad Ibrahim Faya Assiri, Nisreen H Maghraby
{"title":"人工智能和机器学习在急诊医学分诊中的应用--系统性综述。","authors":"Qasem Ahmed Almulihi, Abdulaziz Adel Alquraini, Fatimah Ahmed Ali Almulihi, Abdullah Abdulaziz Alzahid, Saleh Saeed Al Jathnan Al Qahtani, Mohamed Almulhim, Saeed Hussain Saeed Alqhtani, Faisal Mohammed Nafea Alnafea, Saad Ali Saad Mushni, Nasser Abdullah Alaqil, Mohammad Ibrahim Faya Assiri, Nisreen H Maghraby","doi":"10.5455/medarh.2024.78.198-206","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Overcrowding in Emergency departments adversely impacts efficiency, patient outcomes, and resource allocation. Accurate triage systems are essential for prioritizing care and optimizing resources. While traditional methods provide a foundation, they often lack precision in addressing modern healthcare complexities. Artificial intelligence (AI) and machine learning (ML) offer advanced capabilities to enhance triage accuracy, improve patient prioritization, and support clinical decision-making, addressing limitations of conventional approaches and paving the way for adaptive triage solutions.</p><p><strong>Objective: </strong>This systematic review aims to assess the use of artificial intelligence (AI) and machine learning (ML) in determining the outcomes of patients presenting in Emergency department (ED) triage.</p><p><strong>Methods: </strong>A systematic search was conducted on April 21, 2023, using electronic databases including PubMed/Medline, Cochrane Library, Ovid, and Google Scholar, without year restrictions. The main outcome of this review was to assess the use of AI and ML in the ED Triage. Articles that used different models of AI and ML to predict various outcomes of patients in the ED setting were included.</p><p><strong>Results: </strong>A total of 17 studies were included in this systematic review. Fifteen studies assessed the role of machine learning methods in emergency department triage, while two studies evaluated the role of AI and machine learning in prehospital triage. The results of our systematic review favor the use of machine learning methods and artificial intelligence in emergency triage. Machine learning models were found to be superior to conventional emergency severity score methods in determining triage, diagnosis, and early management of patients. Among the machine learning methods, the boosting model was slightly more effective.</p><p><strong>Conclusion: </strong>Our study supports the notion that AI and ML are the future of Emergency departments. They aid in predicting patient outcomes and determining appropriate management strategies more efficiently, thereby enhancing decision making in the ED.</p>","PeriodicalId":94135,"journal":{"name":"Medical archives (Sarajevo, Bosnia and Herzegovina)","volume":"78 3","pages":"198-206"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813208/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applications of Artificial Intelligence and Machine Learning in Emergency Medicine Triage - A Systematic Review.\",\"authors\":\"Qasem Ahmed Almulihi, Abdulaziz Adel Alquraini, Fatimah Ahmed Ali Almulihi, Abdullah Abdulaziz Alzahid, Saleh Saeed Al Jathnan Al Qahtani, Mohamed Almulhim, Saeed Hussain Saeed Alqhtani, Faisal Mohammed Nafea Alnafea, Saad Ali Saad Mushni, Nasser Abdullah Alaqil, Mohammad Ibrahim Faya Assiri, Nisreen H Maghraby\",\"doi\":\"10.5455/medarh.2024.78.198-206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Overcrowding in Emergency departments adversely impacts efficiency, patient outcomes, and resource allocation. Accurate triage systems are essential for prioritizing care and optimizing resources. While traditional methods provide a foundation, they often lack precision in addressing modern healthcare complexities. Artificial intelligence (AI) and machine learning (ML) offer advanced capabilities to enhance triage accuracy, improve patient prioritization, and support clinical decision-making, addressing limitations of conventional approaches and paving the way for adaptive triage solutions.</p><p><strong>Objective: </strong>This systematic review aims to assess the use of artificial intelligence (AI) and machine learning (ML) in determining the outcomes of patients presenting in Emergency department (ED) triage.</p><p><strong>Methods: </strong>A systematic search was conducted on April 21, 2023, using electronic databases including PubMed/Medline, Cochrane Library, Ovid, and Google Scholar, without year restrictions. The main outcome of this review was to assess the use of AI and ML in the ED Triage. Articles that used different models of AI and ML to predict various outcomes of patients in the ED setting were included.</p><p><strong>Results: </strong>A total of 17 studies were included in this systematic review. Fifteen studies assessed the role of machine learning methods in emergency department triage, while two studies evaluated the role of AI and machine learning in prehospital triage. The results of our systematic review favor the use of machine learning methods and artificial intelligence in emergency triage. Machine learning models were found to be superior to conventional emergency severity score methods in determining triage, diagnosis, and early management of patients. Among the machine learning methods, the boosting model was slightly more effective.</p><p><strong>Conclusion: </strong>Our study supports the notion that AI and ML are the future of Emergency departments. They aid in predicting patient outcomes and determining appropriate management strategies more efficiently, thereby enhancing decision making in the ED.</p>\",\"PeriodicalId\":94135,\"journal\":{\"name\":\"Medical archives (Sarajevo, Bosnia and Herzegovina)\",\"volume\":\"78 3\",\"pages\":\"198-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical archives (Sarajevo, Bosnia and Herzegovina)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/medarh.2024.78.198-206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical archives (Sarajevo, Bosnia and Herzegovina)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/medarh.2024.78.198-206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of Artificial Intelligence and Machine Learning in Emergency Medicine Triage - A Systematic Review.

Background: Overcrowding in Emergency departments adversely impacts efficiency, patient outcomes, and resource allocation. Accurate triage systems are essential for prioritizing care and optimizing resources. While traditional methods provide a foundation, they often lack precision in addressing modern healthcare complexities. Artificial intelligence (AI) and machine learning (ML) offer advanced capabilities to enhance triage accuracy, improve patient prioritization, and support clinical decision-making, addressing limitations of conventional approaches and paving the way for adaptive triage solutions.

Objective: This systematic review aims to assess the use of artificial intelligence (AI) and machine learning (ML) in determining the outcomes of patients presenting in Emergency department (ED) triage.

Methods: A systematic search was conducted on April 21, 2023, using electronic databases including PubMed/Medline, Cochrane Library, Ovid, and Google Scholar, without year restrictions. The main outcome of this review was to assess the use of AI and ML in the ED Triage. Articles that used different models of AI and ML to predict various outcomes of patients in the ED setting were included.

Results: A total of 17 studies were included in this systematic review. Fifteen studies assessed the role of machine learning methods in emergency department triage, while two studies evaluated the role of AI and machine learning in prehospital triage. The results of our systematic review favor the use of machine learning methods and artificial intelligence in emergency triage. Machine learning models were found to be superior to conventional emergency severity score methods in determining triage, diagnosis, and early management of patients. Among the machine learning methods, the boosting model was slightly more effective.

Conclusion: Our study supports the notion that AI and ML are the future of Emergency departments. They aid in predicting patient outcomes and determining appropriate management strategies more efficiently, thereby enhancing decision making in the ED.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信