标题三叶蛇属植物花发育的遗传学研究。通过全基因组调查和MADS-Box转录因子的表达分析。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sanam Parajuli, Bibek Adhikari, Madhav P Nepal
{"title":"标题三叶蛇属植物花发育的遗传学研究。通过全基因组调查和MADS-Box转录因子的表达分析。","authors":"Sanam Parajuli, Bibek Adhikari, Madhav P Nepal","doi":"10.1038/s41598-025-88880-x","DOIUrl":null,"url":null,"abstract":"<p><p>The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"5297"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights into genetics of floral development in Amborella trichopoda Baill. through genome-wide survey and expression analysis of MADS-Box transcription factors.\",\"authors\":\"Sanam Parajuli, Bibek Adhikari, Madhav P Nepal\",\"doi\":\"10.1038/s41598-025-88880-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"5297\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88880-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88880-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

ABCDE模型是被子植物花发育的一个公认的通用模型,在不同的植物类群中有一些修改。褪色边界模型的提出是为了更好地解释基生被子植物的花模式,通常具有螺旋排列的花器官。MADS-Box基因家族是这些模式的核心,并在高等植物中得到了极大的扩展,这与花结构的复杂性增加有关。摘要滴虫是一种花特征较简单的基生被子植物,MADS-Box基因在该物种花发育中的遗传和功能作用尚不清楚。本研究的主要目的是对毛癣木MADS-Box基因进行全基因组鉴定和鉴定,并分析其在花蕾和成熟花中的表达。利用隐马尔可夫模型(HMM)的全基因组调查方法,鉴定了42个毛翅蝗MADS-Box基因家族成员。其中II型或MIKC组27例。通过分类和同源性分析,我们发现a类花系MADS-Box基因aptala1 (AP1)在毛翅草中缺失。基因表达分析表明,mikc型基因在雌雄花中差异表达,具有b功能同源物APETALA3 (AP3)和PISTILLATA (PI)在雌雄花中差异表达,而e功能同源物在雌花中上调。在此基础上,作者提出了一种基于模糊边界模型的修改方法,即修改后的a -功能、B-功能和e -功能同源基因的表达具有性别特异性,C-和d -功能基因具有与经典ABCDE模型相似的作用。这些结果为基生被子植物的花模式遗传学提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into genetics of floral development in Amborella trichopoda Baill. through genome-wide survey and expression analysis of MADS-Box transcription factors.

The ABCDE model is a well-known general model of floral development in angiosperms with perfect flowers, with some modifications in different plant taxa. The Fading Borders Model was proposed to better explain floral patterning in basal angiosperms that typically possess spirally arranged floral organs. The MADS-Box gene family is central to these models and has greatly expanded in higher plants which is associated with increasing complexity in floral structures. Amborella trichopoda is a basal angiosperm with simpler floral features, and the genetic and functional roles of MADS-Box genes in floral development remain poorly understood in the species. The major objectives of this study were to perform a genome-wide identification and characterization of MADS-Box genes in A. trichopoda, and to analyze their expression in floral buds and mature flowers. We identified 42 members of the MADS-Box gene family in A. trichopoda with a Hidden Markov Model (HMM)-based genome-wide survey. Among them, 27 were classified into Type II or MIKC group. Based on our classification and orthology analysis, a direct ortholog APETALA1 (AP1), an A-class floral MADS-Box gene was absent in A. trichopoda. Gene expression analysis indicated that MIKC-type genes were differentially expressed between male and female flowers with B-function orthologs: APETALA3 (AP3) and PISTILLATA (PI) in the species having differential expression between the two sexes, and E-function orthologs being upregulated in female flowers. Based on these findings, we propose a modification in the Fading Borders Model in A. trichopoda with a modified A-function, B- and E-function orthologs' expression being sex-specific, and C- and D-function genes having roles similar to that in the classical ABCDE model. These results provide new insights into the genetics underlying floral patterning in the basal angiosperm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信