Tianjian Liu, Shizhao Wang, Fang Dong, Yang Xi, Yunpeng Zhang, Tao He, Xiang Sun, Sheng Liu
{"title":"研究用于三维集成的双退火-CMP 工艺中硅通孔的突起。","authors":"Tianjian Liu, Shizhao Wang, Fang Dong, Yang Xi, Yunpeng Zhang, Tao He, Xiang Sun, Sheng Liu","doi":"10.1038/s41378-024-00797-z","DOIUrl":null,"url":null,"abstract":"<p><p>The technology of through-silicon via (TSV) is extensively employed for achieving dense 3D integration. TSV facilitates the electrical interconnection of various layers of integrated circuits in a vertical orientation, thereby allowing for the creation of sophisticated and space-efficient systems that incorporate diverse functionalities. This work reports TSV fabrication with dual annealing-CMP processes to explore the influence of annealing and CMP processes on the evolution of TSV-Cu microstructures and protrusions. The results show that the dual CMP process can effectively reduce protrusion at high temperatures. The Cu protrusion height increased as both the annealing temperature and duration increased, which was consistent with the high-temperature annealing results, whereas a random phenomenon occurred under 250 °C annealing. A phase field model related to the TSV grain size was established to quantitatively explore the grain morphology distribution and thermal-mechanical behavior. The results show that the strain in copper is nonuniform and that the degree of plastic deformation for each grain is closely related to its distribution. The quantity of grains within the TSV is the most important factor for protrusion. As the average grain size increases, the prominence of copper grain protrusions within TSV intensifies, and the anisotropy of the Cu grains becomes more pronounced. The thermal-mechanical behavior strongly depends on the grain orientation near the top of the TSV, which can cause TSV protrusion irregularities. This work may provide more opportunities to design high-performance TSV preparation methods from the viewpoint of the dual CMP process.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"25"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821882/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study of the protrusion of through-silicon vias in dual annealing-CMP processes for 3D integration.\",\"authors\":\"Tianjian Liu, Shizhao Wang, Fang Dong, Yang Xi, Yunpeng Zhang, Tao He, Xiang Sun, Sheng Liu\",\"doi\":\"10.1038/s41378-024-00797-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The technology of through-silicon via (TSV) is extensively employed for achieving dense 3D integration. TSV facilitates the electrical interconnection of various layers of integrated circuits in a vertical orientation, thereby allowing for the creation of sophisticated and space-efficient systems that incorporate diverse functionalities. This work reports TSV fabrication with dual annealing-CMP processes to explore the influence of annealing and CMP processes on the evolution of TSV-Cu microstructures and protrusions. The results show that the dual CMP process can effectively reduce protrusion at high temperatures. The Cu protrusion height increased as both the annealing temperature and duration increased, which was consistent with the high-temperature annealing results, whereas a random phenomenon occurred under 250 °C annealing. A phase field model related to the TSV grain size was established to quantitatively explore the grain morphology distribution and thermal-mechanical behavior. The results show that the strain in copper is nonuniform and that the degree of plastic deformation for each grain is closely related to its distribution. The quantity of grains within the TSV is the most important factor for protrusion. As the average grain size increases, the prominence of copper grain protrusions within TSV intensifies, and the anisotropy of the Cu grains becomes more pronounced. The thermal-mechanical behavior strongly depends on the grain orientation near the top of the TSV, which can cause TSV protrusion irregularities. This work may provide more opportunities to design high-performance TSV preparation methods from the viewpoint of the dual CMP process.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"25\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821882/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00797-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00797-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Study of the protrusion of through-silicon vias in dual annealing-CMP processes for 3D integration.
The technology of through-silicon via (TSV) is extensively employed for achieving dense 3D integration. TSV facilitates the electrical interconnection of various layers of integrated circuits in a vertical orientation, thereby allowing for the creation of sophisticated and space-efficient systems that incorporate diverse functionalities. This work reports TSV fabrication with dual annealing-CMP processes to explore the influence of annealing and CMP processes on the evolution of TSV-Cu microstructures and protrusions. The results show that the dual CMP process can effectively reduce protrusion at high temperatures. The Cu protrusion height increased as both the annealing temperature and duration increased, which was consistent with the high-temperature annealing results, whereas a random phenomenon occurred under 250 °C annealing. A phase field model related to the TSV grain size was established to quantitatively explore the grain morphology distribution and thermal-mechanical behavior. The results show that the strain in copper is nonuniform and that the degree of plastic deformation for each grain is closely related to its distribution. The quantity of grains within the TSV is the most important factor for protrusion. As the average grain size increases, the prominence of copper grain protrusions within TSV intensifies, and the anisotropy of the Cu grains becomes more pronounced. The thermal-mechanical behavior strongly depends on the grain orientation near the top of the TSV, which can cause TSV protrusion irregularities. This work may provide more opportunities to design high-performance TSV preparation methods from the viewpoint of the dual CMP process.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.