用于脊柱融合的聚醚醚酮(PEEK)棘间垫片的显微和生物力学分析。

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-02-04 DOI:10.3390/ma18030679
Elliot Alonso Alcántara-Arreola, Aida Verónica Rodríguez-Tovas, José Alejandro Hernández-Benítez, Christopher René Torres-SanMiguel
{"title":"用于脊柱融合的聚醚醚酮(PEEK)棘间垫片的显微和生物力学分析。","authors":"Elliot Alonso Alcántara-Arreola, Aida Verónica Rodríguez-Tovas, José Alejandro Hernández-Benítez, Christopher René Torres-SanMiguel","doi":"10.3390/ma18030679","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal fusion is a surgical intervention used to join two or more vertebrae in the spine. An often-used method involves the placement of intervertebral spacers. They are commonly composed of biocompatible materials like polyetheretherketone. It has strength, longevity, and the capacity to interact harmoniously with the human body. Standardized mechanical tests were performed on two distinct implants to assess their biomechanical characteristics. The studies were conducted at a velocity of 2 mm/min. The stopping criteria were determined based on the loads sustained by the 50th percentile. Furthermore, the chemical composition of the implants was assessed using Raman spectroscopy. The implant created via subtractive manufacturing has a significant change in its elastic region at a force of 1300 N, and it begins subsidence when vertebrae are subjected to a load of 1500 N. The integration of microscopic characterization techniques with the mechanical analysis of prostheses in numerous case studies facilitates the biomechanical evaluation of implants.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820224/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microscopic and Biomechanical Analysis of PEEK Interspinous Spacers for Spinal Fusion Applications.\",\"authors\":\"Elliot Alonso Alcántara-Arreola, Aida Verónica Rodríguez-Tovas, José Alejandro Hernández-Benítez, Christopher René Torres-SanMiguel\",\"doi\":\"10.3390/ma18030679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal fusion is a surgical intervention used to join two or more vertebrae in the spine. An often-used method involves the placement of intervertebral spacers. They are commonly composed of biocompatible materials like polyetheretherketone. It has strength, longevity, and the capacity to interact harmoniously with the human body. Standardized mechanical tests were performed on two distinct implants to assess their biomechanical characteristics. The studies were conducted at a velocity of 2 mm/min. The stopping criteria were determined based on the loads sustained by the 50th percentile. Furthermore, the chemical composition of the implants was assessed using Raman spectroscopy. The implant created via subtractive manufacturing has a significant change in its elastic region at a force of 1300 N, and it begins subsidence when vertebrae are subjected to a load of 1500 N. The integration of microscopic characterization techniques with the mechanical analysis of prostheses in numerous case studies facilitates the biomechanical evaluation of implants.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18030679\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18030679","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microscopic and Biomechanical Analysis of PEEK Interspinous Spacers for Spinal Fusion Applications.

Spinal fusion is a surgical intervention used to join two or more vertebrae in the spine. An often-used method involves the placement of intervertebral spacers. They are commonly composed of biocompatible materials like polyetheretherketone. It has strength, longevity, and the capacity to interact harmoniously with the human body. Standardized mechanical tests were performed on two distinct implants to assess their biomechanical characteristics. The studies were conducted at a velocity of 2 mm/min. The stopping criteria were determined based on the loads sustained by the 50th percentile. Furthermore, the chemical composition of the implants was assessed using Raman spectroscopy. The implant created via subtractive manufacturing has a significant change in its elastic region at a force of 1300 N, and it begins subsidence when vertebrae are subjected to a load of 1500 N. The integration of microscopic characterization techniques with the mechanical analysis of prostheses in numerous case studies facilitates the biomechanical evaluation of implants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信