植入胃癌细胞系小鼠的昼夜睡眠-觉醒节律逆转。

IF 3.2 4区 医学 Q2 PHYSIOLOGY
Journal of Physiological Sciences Pub Date : 2025-03-01 Epub Date: 2025-01-31 DOI:10.1016/j.jphyss.2025.100007
Motohide Goto, Takashi Maruyama, Miki Nonaka, Yasuhito Uezono, Yoichi Ueta, Susumu Ueno
{"title":"植入胃癌细胞系小鼠的昼夜睡眠-觉醒节律逆转。","authors":"Motohide Goto, Takashi Maruyama, Miki Nonaka, Yasuhito Uezono, Yoichi Ueta, Susumu Ueno","doi":"10.1016/j.jphyss.2025.100007","DOIUrl":null,"url":null,"abstract":"<p><p>The present study explored the phenotype and behavioral characteristics of mice implanted with the 85As2 human stomach cancer cell lines. Generally, mice are nocturnal; they are active during the dark phase and resting in the light phase. However, mice implanted with 85As2 cells demonstrated diurnal patterns, showing activity in the light phase. The similar light-dark behavioral reversal was noted in mice implanted with other cancer cell lines, such as the HCT116 human colon cancer cell lines. Furthermore, 85As2 implanted mice revealed significant shortening of the free-running period under constant dark conditions. To explore the underlying physiological mechanisms of this circadian rhythm reversal, diurnal variations in the suprachiasmatic nucleus (SCN) were analyzed with observation of c-Fos expression. Interestingly, no significant difference was found in the SCN activity between the control and 85As2-implanted mice, demonstrating rhythm reversal. It is suggested that the lesion causing this rhythm reversal exists downstream of the SCN.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"75 1","pages":"100007"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864213/pdf/","citationCount":"0","resultStr":"{\"title\":\"Circadian sleep-wake rhythm reversal in mice implanted with stomach cancer cell lines.\",\"authors\":\"Motohide Goto, Takashi Maruyama, Miki Nonaka, Yasuhito Uezono, Yoichi Ueta, Susumu Ueno\",\"doi\":\"10.1016/j.jphyss.2025.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study explored the phenotype and behavioral characteristics of mice implanted with the 85As2 human stomach cancer cell lines. Generally, mice are nocturnal; they are active during the dark phase and resting in the light phase. However, mice implanted with 85As2 cells demonstrated diurnal patterns, showing activity in the light phase. The similar light-dark behavioral reversal was noted in mice implanted with other cancer cell lines, such as the HCT116 human colon cancer cell lines. Furthermore, 85As2 implanted mice revealed significant shortening of the free-running period under constant dark conditions. To explore the underlying physiological mechanisms of this circadian rhythm reversal, diurnal variations in the suprachiasmatic nucleus (SCN) were analyzed with observation of c-Fos expression. Interestingly, no significant difference was found in the SCN activity between the control and 85As2-implanted mice, demonstrating rhythm reversal. It is suggested that the lesion causing this rhythm reversal exists downstream of the SCN.</p>\",\"PeriodicalId\":16832,\"journal\":{\"name\":\"Journal of Physiological Sciences\",\"volume\":\"75 1\",\"pages\":\"100007\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jphyss.2025.100007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jphyss.2025.100007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了85As2人胃癌细胞系植入小鼠后的表型和行为特征。一般来说,老鼠是夜行动物;它们在黑暗阶段活跃,在光明阶段休息。然而,植入85As2细胞的小鼠表现出昼夜模式,在光期表现出活动。在植入其他癌细胞系(如HCT116人类结肠癌细胞系)的小鼠中,也发现了类似的明暗行为逆转。此外,85As2植入小鼠在恒定黑暗条件下的自由奔跑期明显缩短。为了探索这种昼夜节律逆转的潜在生理机制,我们通过观察c-Fos表达来分析视交叉上核(SCN)的日变化。有趣的是,在对照组和85as2植入小鼠之间,SCN活性没有发现显著差异,表明节律逆转。这表明引起这种节律逆转的病变存在于SCN的下游。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circadian sleep-wake rhythm reversal in mice implanted with stomach cancer cell lines.

The present study explored the phenotype and behavioral characteristics of mice implanted with the 85As2 human stomach cancer cell lines. Generally, mice are nocturnal; they are active during the dark phase and resting in the light phase. However, mice implanted with 85As2 cells demonstrated diurnal patterns, showing activity in the light phase. The similar light-dark behavioral reversal was noted in mice implanted with other cancer cell lines, such as the HCT116 human colon cancer cell lines. Furthermore, 85As2 implanted mice revealed significant shortening of the free-running period under constant dark conditions. To explore the underlying physiological mechanisms of this circadian rhythm reversal, diurnal variations in the suprachiasmatic nucleus (SCN) were analyzed with observation of c-Fos expression. Interestingly, no significant difference was found in the SCN activity between the control and 85As2-implanted mice, demonstrating rhythm reversal. It is suggested that the lesion causing this rhythm reversal exists downstream of the SCN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
4.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound. Fields covered: Adaptation and environment Autonomic nervous function Biophysics Cell sensors and signaling Central nervous system and brain sciences Endocrinology and metabolism Excitable membranes and neural cell physiology Exercise physiology Gastrointestinal and kidney physiology Heart and circulatory physiology Molecular and cellular physiology Muscle physiology Physiome/systems biology Respiration physiology Senses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信