蚯蚓和丛枝菌根真菌通过共塑途径提高玉米的耐盐性。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Binglei Wang, Mingxuan Xiao, Jia Cao, Chong Wang
{"title":"蚯蚓和丛枝菌根真菌通过共塑途径提高玉米的耐盐性。","authors":"Binglei Wang, Mingxuan Xiao, Jia Cao, Chong Wang","doi":"10.1093/jxb/eraf057","DOIUrl":null,"url":null,"abstract":"<p><p>Symplastic pathways involving plasma membrane H+-ATPases and Na+/H+ antiporters maintain Na+ homeostasis in the symplastic pathways and protect plant functions under salt stress. In this study, we characterized the effects of earthworms and arbuscular mycorrhizal fungi (AMF) on Na+ absorption and transport in roots. Measurements of root Na+ content, plasma membrane H+-ATPase, and Na+/H+ antiporter and antioxidant enzyme activities were performed together with transcriptome analysis. The addition of earthworms and AMF under saline conditions decreased the accumulation of Na+ in maize roots and significantly increased root K:Na ratios, as well as increasing the levels of transcripts encoding plasma membrane H+-ATPases, Na+/H+ antiporters, antioxidant enzymes, and proteins involved in nitrogen and phosphorus uptake under saline conditions. The transcript changes induced by earthworms and AMF suggest that abscisic acid mediates the effects on salt tolerance. Taken together, these findings indicate that earthworms and AMF improve the salt tolerance of maize seedlings through improved symplastic pathways.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"2373-2386"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earthworms and arbuscular mycorrhizal fungi improve salt tolerance in maize through symplastic pathways.\",\"authors\":\"Binglei Wang, Mingxuan Xiao, Jia Cao, Chong Wang\",\"doi\":\"10.1093/jxb/eraf057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Symplastic pathways involving plasma membrane H+-ATPases and Na+/H+ antiporters maintain Na+ homeostasis in the symplastic pathways and protect plant functions under salt stress. In this study, we characterized the effects of earthworms and arbuscular mycorrhizal fungi (AMF) on Na+ absorption and transport in roots. Measurements of root Na+ content, plasma membrane H+-ATPase, and Na+/H+ antiporter and antioxidant enzyme activities were performed together with transcriptome analysis. The addition of earthworms and AMF under saline conditions decreased the accumulation of Na+ in maize roots and significantly increased root K:Na ratios, as well as increasing the levels of transcripts encoding plasma membrane H+-ATPases, Na+/H+ antiporters, antioxidant enzymes, and proteins involved in nitrogen and phosphorus uptake under saline conditions. The transcript changes induced by earthworms and AMF suggest that abscisic acid mediates the effects on salt tolerance. Taken together, these findings indicate that earthworms and AMF improve the salt tolerance of maize seedlings through improved symplastic pathways.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"2373-2386\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf057\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf057","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

包括质膜H+- atp酶和Na+/H+反转运蛋白在内的共塑途径维持了共塑途径中的钠(Na+)稳态,保护了盐胁迫下植物的功能。在这项研究中,我们描述了蚯蚓和丛枝菌根真菌(AMF)对根中Na+吸收和运输的影响。测定根Na+含量、质膜H+- atp酶、Na+/H+反转运蛋白和抗氧化酶活性,并进行转录组分析。盐碱化条件下,蚯蚓和AMF的添加降低了玉米根系Na+的积累,显著提高了根系K:Na比值,增加了生理盐水条件下质膜H+- atp酶、Na+/H+反转运蛋白、抗氧化酶和参与氮磷吸收的蛋白质的转录本水平。蚯蚓和AMF诱导的转录本变化表明,脱落酸介导了耐盐性的影响。综上所述,这些发现表明蚯蚓和AMF通过改善共塑途径提高了玉米幼苗的耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Earthworms and arbuscular mycorrhizal fungi improve salt tolerance in maize through symplastic pathways.

Symplastic pathways involving plasma membrane H+-ATPases and Na+/H+ antiporters maintain Na+ homeostasis in the symplastic pathways and protect plant functions under salt stress. In this study, we characterized the effects of earthworms and arbuscular mycorrhizal fungi (AMF) on Na+ absorption and transport in roots. Measurements of root Na+ content, plasma membrane H+-ATPase, and Na+/H+ antiporter and antioxidant enzyme activities were performed together with transcriptome analysis. The addition of earthworms and AMF under saline conditions decreased the accumulation of Na+ in maize roots and significantly increased root K:Na ratios, as well as increasing the levels of transcripts encoding plasma membrane H+-ATPases, Na+/H+ antiporters, antioxidant enzymes, and proteins involved in nitrogen and phosphorus uptake under saline conditions. The transcript changes induced by earthworms and AMF suggest that abscisic acid mediates the effects on salt tolerance. Taken together, these findings indicate that earthworms and AMF improve the salt tolerance of maize seedlings through improved symplastic pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信