亚致死毒死蜱胁迫下原黄脚虱两种细胞超氧化物歧化酶的研究。

IF 1.8 3区 农林科学 Q2 ENTOMOLOGY
Jie Yang, Xi Wen, Xingrui Huang, Jie Zou, Yun Lu, Fang Yuan, Sijie Xiao, Xiaochao Tang, Zhixiao Liu, Zhengwei Wu, Xinglong Huang
{"title":"亚致死毒死蜱胁迫下原黄脚虱两种细胞超氧化物歧化酶的研究。","authors":"Jie Yang, Xi Wen, Xingrui Huang, Jie Zou, Yun Lu, Fang Yuan, Sijie Xiao, Xiaochao Tang, Zhixiao Liu, Zhengwei Wu, Xinglong Huang","doi":"10.1093/ee/nvaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticides released into the environment are increasingly recognized as a global threat to freshwater ecosystems because of their adverse effects on non-target organisms, particularly aquatic insects and other arthropods. Superoxide dismutases (SODs) are important antioxidant enzymes that play a crucial role in protecting organisms from oxidative stress induced by harmful materials. In this study, we identified 2 cellular SODs (PxSOD1 and PxSOD2) in Protohermes xanthodes Navás (Megaloptera: Corydalidae), an freshwater predatory insect, and determined the oxidative stress induced in P. xanthodes larvae by sublethal exposure to chlorpyrifos (CPF). PxSOD1 and PxSOD2 are members of the cytoplasmic Cu/ZnSODs and mitochondrial MnSODs, respectively, and differ substantially in protein structure. Both PxSOD1 and PxSOD2 recombinant proteins demonstrated catalytic activity toward O2•- in the activity assays. After exposure to sublethal concentrations of CPF, malondialdehyde (MDA) content and SOD activities were increased in P. xanthodes larvae in a dose-dependent manner. PxSOD1 expression was decreased in the 0.42 and 4.2 μg/L CPF groups and increased in the 4.2 μg/L CPF group. PxSOD2 was upregulated by 0.42, 4.2, and 8.4 μg/L CPF treatments and the expression levels in the 4.2 and 8.4 μg/L CPF groups were significantly higher than that in the no CPF control. Our results suggest that sublethal concentrations of CPF can induce oxidative stress in P. xanthodes larvae, and the cellular SODs in P. xanthodes larvae may contribute to the protection against CPF-induced oxidative stress.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"309-319"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of two cellular superoxide dismutases in Protohermes xanthodes (Megaloptera: Corydalidae) in response to sublethal chlorpyrifos stress.\",\"authors\":\"Jie Yang, Xi Wen, Xingrui Huang, Jie Zou, Yun Lu, Fang Yuan, Sijie Xiao, Xiaochao Tang, Zhixiao Liu, Zhengwei Wu, Xinglong Huang\",\"doi\":\"10.1093/ee/nvaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pesticides released into the environment are increasingly recognized as a global threat to freshwater ecosystems because of their adverse effects on non-target organisms, particularly aquatic insects and other arthropods. Superoxide dismutases (SODs) are important antioxidant enzymes that play a crucial role in protecting organisms from oxidative stress induced by harmful materials. In this study, we identified 2 cellular SODs (PxSOD1 and PxSOD2) in Protohermes xanthodes Navás (Megaloptera: Corydalidae), an freshwater predatory insect, and determined the oxidative stress induced in P. xanthodes larvae by sublethal exposure to chlorpyrifos (CPF). PxSOD1 and PxSOD2 are members of the cytoplasmic Cu/ZnSODs and mitochondrial MnSODs, respectively, and differ substantially in protein structure. Both PxSOD1 and PxSOD2 recombinant proteins demonstrated catalytic activity toward O2•- in the activity assays. After exposure to sublethal concentrations of CPF, malondialdehyde (MDA) content and SOD activities were increased in P. xanthodes larvae in a dose-dependent manner. PxSOD1 expression was decreased in the 0.42 and 4.2 μg/L CPF groups and increased in the 4.2 μg/L CPF group. PxSOD2 was upregulated by 0.42, 4.2, and 8.4 μg/L CPF treatments and the expression levels in the 4.2 and 8.4 μg/L CPF groups were significantly higher than that in the no CPF control. Our results suggest that sublethal concentrations of CPF can induce oxidative stress in P. xanthodes larvae, and the cellular SODs in P. xanthodes larvae may contribute to the protection against CPF-induced oxidative stress.</p>\",\"PeriodicalId\":11751,\"journal\":{\"name\":\"Environmental Entomology\",\"volume\":\" \",\"pages\":\"309-319\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/ee/nvaf015\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvaf015","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

释放到环境中的农药对非目标生物,特别是水生昆虫和其他节肢动物产生不利影响,日益被认为是对淡水生态系统的全球性威胁。超氧化物歧化酶(sod)是一种重要的抗氧化酶,在保护生物体免受有害物质诱导的氧化应激中起着至关重要的作用。本研究在淡水捕食性昆虫原斑叶蝉Navás(大翅目:斑叶蝉科)中鉴定出2种细胞sod (PxSOD1和PxSOD2),并测定了亚致死毒死蜱(CPF)对原斑叶蝉幼虫氧化应激的影响。PxSOD1和PxSOD2分别是细胞质Cu/ZnSODs和线粒体MnSODs的成员,在蛋白质结构上存在很大差异。PxSOD1和PxSOD2重组蛋白均表现出对O2•-的催化活性。暴露于亚致死浓度CPF后,黄颡鱼幼虫体内丙二醛(MDA)含量和SOD活性呈剂量依赖性增加。PxSOD1表达在0.42和4.2 μg/L CPF组降低,在4.2 μg/L CPF组升高。PxSOD2在0.42、4.2和8.4 μg/L CPF处理下表达上调,且4.2和8.4 μg/L CPF处理组的表达水平显著高于无CPF处理组。结果表明,亚致死浓度的CPF可诱导黄栎幼体氧化应激,黄栎幼体细胞内的sod可能对CPF诱导的氧化应激具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of two cellular superoxide dismutases in Protohermes xanthodes (Megaloptera: Corydalidae) in response to sublethal chlorpyrifos stress.

Pesticides released into the environment are increasingly recognized as a global threat to freshwater ecosystems because of their adverse effects on non-target organisms, particularly aquatic insects and other arthropods. Superoxide dismutases (SODs) are important antioxidant enzymes that play a crucial role in protecting organisms from oxidative stress induced by harmful materials. In this study, we identified 2 cellular SODs (PxSOD1 and PxSOD2) in Protohermes xanthodes Navás (Megaloptera: Corydalidae), an freshwater predatory insect, and determined the oxidative stress induced in P. xanthodes larvae by sublethal exposure to chlorpyrifos (CPF). PxSOD1 and PxSOD2 are members of the cytoplasmic Cu/ZnSODs and mitochondrial MnSODs, respectively, and differ substantially in protein structure. Both PxSOD1 and PxSOD2 recombinant proteins demonstrated catalytic activity toward O2•- in the activity assays. After exposure to sublethal concentrations of CPF, malondialdehyde (MDA) content and SOD activities were increased in P. xanthodes larvae in a dose-dependent manner. PxSOD1 expression was decreased in the 0.42 and 4.2 μg/L CPF groups and increased in the 4.2 μg/L CPF group. PxSOD2 was upregulated by 0.42, 4.2, and 8.4 μg/L CPF treatments and the expression levels in the 4.2 and 8.4 μg/L CPF groups were significantly higher than that in the no CPF control. Our results suggest that sublethal concentrations of CPF can induce oxidative stress in P. xanthodes larvae, and the cellular SODs in P. xanthodes larvae may contribute to the protection against CPF-induced oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信