Nayli Erdeanna Binte Surat'man, Xin Lin Quek, Nannan Wang, Enyi Ye, Jianwei Xu, Zibiao Li and Bofan Li
{"title":"用于空气过滤、水净化和除油的可持续纳米纤维膜。","authors":"Nayli Erdeanna Binte Surat'man, Xin Lin Quek, Nannan Wang, Enyi Ye, Jianwei Xu, Zibiao Li and Bofan Li","doi":"10.1039/D4NR04673K","DOIUrl":null,"url":null,"abstract":"<p >The increasing demand for sustainable solutions to address environmental and energy challenges has driven the development of advanced materials. Among them, nanofibrous membranes have emerged due to their high surface area, tunable porosity and versatile mechanical properties. However, traditional nanofibrous membranes, made from petroleum-based synthetic polymers, pose significant environmental concerns due to their non-biodegradability and reliance on fossil resources. This paper reviews recent advancements in the development of sustainable nanofibrous membranes, focusing on the use of biobased and biodegradable materials, and circular design approaches aimed at reducing environmental impact throughout the membrane life cycle. Challenges associated with improving the mechanical strength and stability of biopolymer-based nanofibers and expanding application areas are discussed. By highlighting strategies to overcome these limitations, this review aims to provide insights into the future direction of sustainable nanofibrous membranes, paving the way for their broader adoption in eco-friendly technological solutions.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 11","pages":" 6427-6447"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr04673k?page=search","citationCount":"0","resultStr":"{\"title\":\"Sustainable nanofibrous membranes for air filtration, water purification and oil removal\",\"authors\":\"Nayli Erdeanna Binte Surat'man, Xin Lin Quek, Nannan Wang, Enyi Ye, Jianwei Xu, Zibiao Li and Bofan Li\",\"doi\":\"10.1039/D4NR04673K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing demand for sustainable solutions to address environmental and energy challenges has driven the development of advanced materials. Among them, nanofibrous membranes have emerged due to their high surface area, tunable porosity and versatile mechanical properties. However, traditional nanofibrous membranes, made from petroleum-based synthetic polymers, pose significant environmental concerns due to their non-biodegradability and reliance on fossil resources. This paper reviews recent advancements in the development of sustainable nanofibrous membranes, focusing on the use of biobased and biodegradable materials, and circular design approaches aimed at reducing environmental impact throughout the membrane life cycle. Challenges associated with improving the mechanical strength and stability of biopolymer-based nanofibers and expanding application areas are discussed. By highlighting strategies to overcome these limitations, this review aims to provide insights into the future direction of sustainable nanofibrous membranes, paving the way for their broader adoption in eco-friendly technological solutions.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 11\",\"pages\":\" 6427-6447\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr04673k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04673k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04673k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sustainable nanofibrous membranes for air filtration, water purification and oil removal
The increasing demand for sustainable solutions to address environmental and energy challenges has driven the development of advanced materials. Among them, nanofibrous membranes have emerged due to their high surface area, tunable porosity and versatile mechanical properties. However, traditional nanofibrous membranes, made from petroleum-based synthetic polymers, pose significant environmental concerns due to their non-biodegradability and reliance on fossil resources. This paper reviews recent advancements in the development of sustainable nanofibrous membranes, focusing on the use of biobased and biodegradable materials, and circular design approaches aimed at reducing environmental impact throughout the membrane life cycle. Challenges associated with improving the mechanical strength and stability of biopolymer-based nanofibers and expanding application areas are discussed. By highlighting strategies to overcome these limitations, this review aims to provide insights into the future direction of sustainable nanofibrous membranes, paving the way for their broader adoption in eco-friendly technological solutions.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.