Shitan Xu, Congcong Liu, Yang Yang, Yu Yao, Hai Yang, Xianhong Rui, Yan Yu
{"title":"ZIF-8功能化分离器调节na离子通量,实现高性能钠金属电池。","authors":"Shitan Xu, Congcong Liu, Yang Yang, Yu Yao, Hai Yang, Xianhong Rui, Yan Yu","doi":"10.1002/smtd.202402084","DOIUrl":null,"url":null,"abstract":"<p>The practical application of sodium metal batteries faces significant challenges, such as unpredictable Na dendrite growth and the instability of solid-electrolyte interphase. Herein, a novel separator composed of glass fiber (GF) impregnated with a zeolitic imidazolate framework (ZIF-8) layer, referred to as GF@ZIF-8 is introduced. This optimized separator exhibits enhanced anti-puncture strength, a high Na transference number, and fast Na-ion conductivity. The ZIF-8 layer effectually regulates the spatial concentration distribution of Na ions and their flux vectors, leading to the homogeneous deposition of Na. Consequently, the Na||Na symmetric cells utilizing the GF@ZIF-8 separator demonstrate outstanding cyclability, achieving 850 h at 0.5 mA cm<sup>−2</sup> and 420 h at 1 mA cm<sup>−2</sup>, outperforming cells with bare GF (<180 h). Furthermore, the assembled Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>||GF@ZIF-8||Na full cells exhibit remarkably improves rate performance (81 mA h g<sup>−1</sup> at 30 C), cyclability (93.5% capacity retention over 900 cycles at 10 C), and low-temperature applicability (78 mA h g<sup>−1</sup> under 0.2 C and −40 °C). The simulations reveal that, except for regulating Na-ion flux, the introduction of the porous ZIF-8 on the GF separator also enhances the local electric field near the anode, thereby boosting the transfer of Na<sup>+</sup>, which contributes to the improved Na storage performance.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 8","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZIF-8 Functionalized Separator Regulating Na-Ion Flux and Enabling High-Performance Sodium-Metal Batteries\",\"authors\":\"Shitan Xu, Congcong Liu, Yang Yang, Yu Yao, Hai Yang, Xianhong Rui, Yan Yu\",\"doi\":\"10.1002/smtd.202402084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The practical application of sodium metal batteries faces significant challenges, such as unpredictable Na dendrite growth and the instability of solid-electrolyte interphase. Herein, a novel separator composed of glass fiber (GF) impregnated with a zeolitic imidazolate framework (ZIF-8) layer, referred to as GF@ZIF-8 is introduced. This optimized separator exhibits enhanced anti-puncture strength, a high Na transference number, and fast Na-ion conductivity. The ZIF-8 layer effectually regulates the spatial concentration distribution of Na ions and their flux vectors, leading to the homogeneous deposition of Na. Consequently, the Na||Na symmetric cells utilizing the GF@ZIF-8 separator demonstrate outstanding cyclability, achieving 850 h at 0.5 mA cm<sup>−2</sup> and 420 h at 1 mA cm<sup>−2</sup>, outperforming cells with bare GF (<180 h). Furthermore, the assembled Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>||GF@ZIF-8||Na full cells exhibit remarkably improves rate performance (81 mA h g<sup>−1</sup> at 30 C), cyclability (93.5% capacity retention over 900 cycles at 10 C), and low-temperature applicability (78 mA h g<sup>−1</sup> under 0.2 C and −40 °C). The simulations reveal that, except for regulating Na-ion flux, the introduction of the porous ZIF-8 on the GF separator also enhances the local electric field near the anode, thereby boosting the transfer of Na<sup>+</sup>, which contributes to the improved Na storage performance.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202402084\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202402084","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
钠金属电池的实际应用面临着不可预测的Na枝晶生长和固-电解质界面不稳定等重大挑战。本文介绍了一种由玻璃纤维(GF)浸渍沸石咪唑酸骨架(ZIF-8)层组成的新型分离器,称为GF@ZIF-8。这种优化后的隔膜具有增强的抗穿刺强度、高的钠转移数和快速的钠离子导电性。ZIF-8层有效调节了Na离子的空间浓度分布及其通量矢量,使Na沉积均匀。因此,使用GF@ZIF-8分离器的Na||Na对称电池表现出出色的可循环性,在0.5 mA cm-2下达到850小时,在1 mA cm-2下达到420小时,优于裸GF (3V2(PO4)3||GF@ZIF-8||Na全电池,表现出显著提高的倍率性能(30℃下81 mA h g-1),可循环性(在10℃下900次循环保持93.5%的容量)和低温适用性(在0.2℃和-40℃下78 mA h g-1)。模拟结果表明,多孔ZIF-8在GF分离器上的引入除了可以调节Na离子通量外,还可以增强阳极附近的局部电场,从而促进Na+的转移,从而提高Na的存储性能。
The practical application of sodium metal batteries faces significant challenges, such as unpredictable Na dendrite growth and the instability of solid-electrolyte interphase. Herein, a novel separator composed of glass fiber (GF) impregnated with a zeolitic imidazolate framework (ZIF-8) layer, referred to as GF@ZIF-8 is introduced. This optimized separator exhibits enhanced anti-puncture strength, a high Na transference number, and fast Na-ion conductivity. The ZIF-8 layer effectually regulates the spatial concentration distribution of Na ions and their flux vectors, leading to the homogeneous deposition of Na. Consequently, the Na||Na symmetric cells utilizing the GF@ZIF-8 separator demonstrate outstanding cyclability, achieving 850 h at 0.5 mA cm−2 and 420 h at 1 mA cm−2, outperforming cells with bare GF (<180 h). Furthermore, the assembled Na3V2(PO4)3||GF@ZIF-8||Na full cells exhibit remarkably improves rate performance (81 mA h g−1 at 30 C), cyclability (93.5% capacity retention over 900 cycles at 10 C), and low-temperature applicability (78 mA h g−1 under 0.2 C and −40 °C). The simulations reveal that, except for regulating Na-ion flux, the introduction of the porous ZIF-8 on the GF separator also enhances the local electric field near the anode, thereby boosting the transfer of Na+, which contributes to the improved Na storage performance.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.