聚苯胺基CO2还原反应协同电催化剂的研究进展

IF 2.9 Q2 ELECTROCHEMISTRY
Yashly Yesudas K, Gopal Buvaneswari, Annamalai Senthil Kumar
{"title":"聚苯胺基CO2还原反应协同电催化剂的研究进展","authors":"Yashly Yesudas K,&nbsp;Gopal Buvaneswari,&nbsp;Annamalai Senthil Kumar","doi":"10.1002/elsa.202400007","DOIUrl":null,"url":null,"abstract":"<p>The increasing impact of industrialization on climate change, primarily due to the emission of greenhouse gases such as carbon dioxide (CO<sub>2</sub>), underscores the urgent need for effective strategies for CO<sub>2</sub> fixation and utilization. Electrochemical CO<sub>2</sub> reduction holds promise in this regard, owing to its scalability, energy efficiency, selectivity, and operability under ambient conditions. However, the activation of CO<sub>2</sub> requires suitable electrocatalysts to lower energy barriers. Various electrocatalysts, including metal-based systems and conducting polymers like polyaniline (PANi), have been identified to effectively lower this barrier and enhance CO<sub>2</sub> reduction efficiency via synergistic mechanisms. PANi is particularly notable for its versatile interaction with CO<sub>2</sub>, cost-effectiveness, stability, and tunable properties, making it an excellent catalyst option for CO<sub>2</sub> reduction reactions (CO<sub>2</sub>RR). Recent advancements in research focus on enhancing PANi conductivity and facilitating electron transfer through metal and metal oxide doping. Leveraging PANi's π–π electron stabilization ensures high conductivity and stability, rendering it suitable for real-time applications. Strategic dopant selection and optimization of Lewis acid-base interactions are crucial for selective CO<sub>2</sub>-to-hydrocarbon conversion. Tailored electrode modifications, especially metal/metal oxide-loaded PANi electrodes, outperform conventional approaches, underscoring the importance of catalyst design in advancing CO<sub>2</sub> electroreduction technologies. This review provides a comprehensive analysis of the systematic methodology involved in preparing PANi-modified electrodes and explores the enhancements achieved through the incorporation of metals and metal oxides onto PANi-modified electrodes. It highlights the superior efficiency and selectivity of CO<sub>2</sub>RR facilitated by these modified electrodes through profound synergistic approach compared to conventional metal electrodes such as platinum.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202400007","citationCount":"0","resultStr":"{\"title\":\"Polyaniline-based synergetic electrocatalysts for CO2 reduction reaction: A review\",\"authors\":\"Yashly Yesudas K,&nbsp;Gopal Buvaneswari,&nbsp;Annamalai Senthil Kumar\",\"doi\":\"10.1002/elsa.202400007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing impact of industrialization on climate change, primarily due to the emission of greenhouse gases such as carbon dioxide (CO<sub>2</sub>), underscores the urgent need for effective strategies for CO<sub>2</sub> fixation and utilization. Electrochemical CO<sub>2</sub> reduction holds promise in this regard, owing to its scalability, energy efficiency, selectivity, and operability under ambient conditions. However, the activation of CO<sub>2</sub> requires suitable electrocatalysts to lower energy barriers. Various electrocatalysts, including metal-based systems and conducting polymers like polyaniline (PANi), have been identified to effectively lower this barrier and enhance CO<sub>2</sub> reduction efficiency via synergistic mechanisms. PANi is particularly notable for its versatile interaction with CO<sub>2</sub>, cost-effectiveness, stability, and tunable properties, making it an excellent catalyst option for CO<sub>2</sub> reduction reactions (CO<sub>2</sub>RR). Recent advancements in research focus on enhancing PANi conductivity and facilitating electron transfer through metal and metal oxide doping. Leveraging PANi's π–π electron stabilization ensures high conductivity and stability, rendering it suitable for real-time applications. Strategic dopant selection and optimization of Lewis acid-base interactions are crucial for selective CO<sub>2</sub>-to-hydrocarbon conversion. Tailored electrode modifications, especially metal/metal oxide-loaded PANi electrodes, outperform conventional approaches, underscoring the importance of catalyst design in advancing CO<sub>2</sub> electroreduction technologies. This review provides a comprehensive analysis of the systematic methodology involved in preparing PANi-modified electrodes and explores the enhancements achieved through the incorporation of metals and metal oxides onto PANi-modified electrodes. It highlights the superior efficiency and selectivity of CO<sub>2</sub>RR facilitated by these modified electrodes through profound synergistic approach compared to conventional metal electrodes such as platinum.</p>\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202400007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202400007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202400007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

工业化对气候变化的影响越来越大,主要是由于二氧化碳等温室气体的排放,这突出表明迫切需要制定有效的二氧化碳固定和利用战略。由于其可扩展性、能效、选择性和在环境条件下的可操作性,电化学CO2还原技术在这方面具有前景。然而,CO2的活化需要合适的电催化剂来降低能垒。各种各样的电催化剂,包括金属基系统和导电聚合物,如聚苯胺(PANi),已经被确定可以有效地降低这一屏障,并通过协同机制提高二氧化碳减排效率。聚苯胺特别值得注意的是其与二氧化碳的多种相互作用,成本效益,稳定性和可调性质,使其成为二氧化碳还原反应(CO2RR)的绝佳催化剂选择。近年来的研究进展主要集中在通过金属和金属氧化物掺杂来提高聚苯胺的导电性和促进电子转移。利用聚苯胺的π -π电子稳定性确保了高导电性和稳定性,使其适合实时应用。战略性的掺杂剂选择和Lewis酸碱相互作用的优化是co2 -to-烃选择性转化的关键。量身定制的电极修饰,特别是金属/金属氧化物负载的聚苯胺电极,优于传统的方法,强调了催化剂设计在推进二氧化碳电还原技术中的重要性。本文综述了制备聚苯胺修饰电极的系统方法,并探讨了通过在聚苯胺修饰电极上掺入金属和金属氧化物所取得的增强效果。与传统的金属电极(如铂)相比,这些修饰电极通过深刻的协同方法促进了CO2RR的优越效率和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polyaniline-based synergetic electrocatalysts for CO2 reduction reaction: A review

Polyaniline-based synergetic electrocatalysts for CO2 reduction reaction: A review

The increasing impact of industrialization on climate change, primarily due to the emission of greenhouse gases such as carbon dioxide (CO2), underscores the urgent need for effective strategies for CO2 fixation and utilization. Electrochemical CO2 reduction holds promise in this regard, owing to its scalability, energy efficiency, selectivity, and operability under ambient conditions. However, the activation of CO2 requires suitable electrocatalysts to lower energy barriers. Various electrocatalysts, including metal-based systems and conducting polymers like polyaniline (PANi), have been identified to effectively lower this barrier and enhance CO2 reduction efficiency via synergistic mechanisms. PANi is particularly notable for its versatile interaction with CO2, cost-effectiveness, stability, and tunable properties, making it an excellent catalyst option for CO2 reduction reactions (CO2RR). Recent advancements in research focus on enhancing PANi conductivity and facilitating electron transfer through metal and metal oxide doping. Leveraging PANi's π–π electron stabilization ensures high conductivity and stability, rendering it suitable for real-time applications. Strategic dopant selection and optimization of Lewis acid-base interactions are crucial for selective CO2-to-hydrocarbon conversion. Tailored electrode modifications, especially metal/metal oxide-loaded PANi electrodes, outperform conventional approaches, underscoring the importance of catalyst design in advancing CO2 electroreduction technologies. This review provides a comprehensive analysis of the systematic methodology involved in preparing PANi-modified electrodes and explores the enhancements achieved through the incorporation of metals and metal oxides onto PANi-modified electrodes. It highlights the superior efficiency and selectivity of CO2RR facilitated by these modified electrodes through profound synergistic approach compared to conventional metal electrodes such as platinum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信