基于深度强化学习的精准农业SD-IoT流感知qos配置

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohammed J. F. Alenazi, Mahmoud Ahmad Al-Khasawneh, Saeedur Rahman, Zaid Bin Faheem
{"title":"基于深度强化学习的精准农业SD-IoT流感知qos配置","authors":"Mohammed J. F. Alenazi,&nbsp;Mahmoud Ahmad Al-Khasawneh,&nbsp;Saeedur Rahman,&nbsp;Zaid Bin Faheem","doi":"10.1111/coin.70023","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To meet the demands of modern technologies such as 5G, big data, edge computing, precision, and sustainable agriculture, the combination of Internet-of-Things (IoT) with software-defined networking (SDN) known as SD-IoT is suggested to automate the network by leveraging the programmable and centralized SDN interfaces. The previous literature has suggested quality-of-service (QoS) aware flow processing using manual strategies or heuristic algorithms, however, these schemes proposed with white-box approaches do not provide effective results as the network scales or dynamic changes are happening. This article proposes a novel QoS provision strategy using deep reinforcement learning (DRL) to calculate the optimal routes autonomously for SD-IoT traffic. To satisfy the different demands of flows in the SD-IoT network the flows are divided into two types. Hence, based on their service demand the routes are generated for them as per service request. The scenario is explained with precision agriculture based on SD-IoT and results are compared with benchmark strategies. A real internet topology is used for the evaluation of results. The results indicated that the proposed method gives improvements for QoS such as delay, throughput, packet loss rate, and jitter compared with benchmark models.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Flow Aware-QoS Provisioning in SD-IoT for Precision Agriculture\",\"authors\":\"Mohammed J. F. Alenazi,&nbsp;Mahmoud Ahmad Al-Khasawneh,&nbsp;Saeedur Rahman,&nbsp;Zaid Bin Faheem\",\"doi\":\"10.1111/coin.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>To meet the demands of modern technologies such as 5G, big data, edge computing, precision, and sustainable agriculture, the combination of Internet-of-Things (IoT) with software-defined networking (SDN) known as SD-IoT is suggested to automate the network by leveraging the programmable and centralized SDN interfaces. The previous literature has suggested quality-of-service (QoS) aware flow processing using manual strategies or heuristic algorithms, however, these schemes proposed with white-box approaches do not provide effective results as the network scales or dynamic changes are happening. This article proposes a novel QoS provision strategy using deep reinforcement learning (DRL) to calculate the optimal routes autonomously for SD-IoT traffic. To satisfy the different demands of flows in the SD-IoT network the flows are divided into two types. Hence, based on their service demand the routes are generated for them as per service request. The scenario is explained with precision agriculture based on SD-IoT and results are compared with benchmark strategies. A real internet topology is used for the evaluation of results. The results indicated that the proposed method gives improvements for QoS such as delay, throughput, packet loss rate, and jitter compared with benchmark models.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70023\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70023","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了满足5G、大数据、边缘计算、精准化、可持续农业等现代技术的需求,建议将物联网(IoT)与软件定义网络(SDN)相结合,利用可编程、集中的SDN接口实现网络自动化。先前的文献建议使用人工策略或启发式算法进行服务质量感知流处理,但由于网络规模或动态变化的发生,这些使用白盒方法提出的方案无法提供有效的结果。本文提出了一种新的QoS提供策略,利用深度强化学习(DRL)自主计算SD-IoT流量的最优路由。为满足SD-IoT网络中流量的不同需求,将流量分为两类。因此,根据他们的服务需求,根据每个服务请求为他们生成路由。以基于SD-IoT的精准农业为例进行场景解释,并与基准策略进行对比。一个真实的互联网拓扑被用来评估结果。结果表明,与基准模型相比,该方法在延迟、吞吐量、丢包率和抖动等QoS方面都有改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning Based Flow Aware-QoS Provisioning in SD-IoT for Precision Agriculture

To meet the demands of modern technologies such as 5G, big data, edge computing, precision, and sustainable agriculture, the combination of Internet-of-Things (IoT) with software-defined networking (SDN) known as SD-IoT is suggested to automate the network by leveraging the programmable and centralized SDN interfaces. The previous literature has suggested quality-of-service (QoS) aware flow processing using manual strategies or heuristic algorithms, however, these schemes proposed with white-box approaches do not provide effective results as the network scales or dynamic changes are happening. This article proposes a novel QoS provision strategy using deep reinforcement learning (DRL) to calculate the optimal routes autonomously for SD-IoT traffic. To satisfy the different demands of flows in the SD-IoT network the flows are divided into two types. Hence, based on their service demand the routes are generated for them as per service request. The scenario is explained with precision agriculture based on SD-IoT and results are compared with benchmark strategies. A real internet topology is used for the evaluation of results. The results indicated that the proposed method gives improvements for QoS such as delay, throughput, packet loss rate, and jitter compared with benchmark models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信