淮河(蚌埠段)干湿季节溶解有机质特征

IF 2 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Han Song, Xiaoli Kai, Liangmin Gao, Jieyu Xia, Xin Shu, Limei Zhu, Kai Zhang, Lin Wu, Zhendong Pang
{"title":"淮河(蚌埠段)干湿季节溶解有机质特征","authors":"Han Song,&nbsp;Xiaoli Kai,&nbsp;Liangmin Gao,&nbsp;Jieyu Xia,&nbsp;Xin Shu,&nbsp;Limei Zhu,&nbsp;Kai Zhang,&nbsp;Lin Wu,&nbsp;Zhendong Pang","doi":"10.1007/s00027-025-01167-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the characteristics of dissolved organic matter (DOM) in the Huai River (Bengbu section) in China during wet and dry seasons. The methods included three-dimensional fluorescence spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC) and self-organizing neural networks (SOM) to analyze DOM levels and composition. The results showed that the humus component (C1) of DOM was dominant in the water body, and there were significant seasonal differences. Rainfall and runoff significantly increased the input of humus organic matter in the wet season, and the fluorescence intensity and relative abundance of humic-like components (C1 and C2) were higher in the wet season than in the dry season. The concentration of plankton metabolites (protein-like component, C3) was higher in the dry season, reflecting increased microbial activity in the low water flow environment. Principal component analysis (PCA) revealed the dominant role of plankton metabolism and microbial activity on organic matter distribution, and the contribution of terrestrial organic matter to humus components through soil runoff. In summary, the seasonal variations in the Huai River water DOM were driven by both natural processes and human activities.</p></div>","PeriodicalId":55489,"journal":{"name":"Aquatic Sciences","volume":"87 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of dissolved organic matter in the Huai River (Bengbu section) during wet and dry seasons\",\"authors\":\"Han Song,&nbsp;Xiaoli Kai,&nbsp;Liangmin Gao,&nbsp;Jieyu Xia,&nbsp;Xin Shu,&nbsp;Limei Zhu,&nbsp;Kai Zhang,&nbsp;Lin Wu,&nbsp;Zhendong Pang\",\"doi\":\"10.1007/s00027-025-01167-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the characteristics of dissolved organic matter (DOM) in the Huai River (Bengbu section) in China during wet and dry seasons. The methods included three-dimensional fluorescence spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC) and self-organizing neural networks (SOM) to analyze DOM levels and composition. The results showed that the humus component (C1) of DOM was dominant in the water body, and there were significant seasonal differences. Rainfall and runoff significantly increased the input of humus organic matter in the wet season, and the fluorescence intensity and relative abundance of humic-like components (C1 and C2) were higher in the wet season than in the dry season. The concentration of plankton metabolites (protein-like component, C3) was higher in the dry season, reflecting increased microbial activity in the low water flow environment. Principal component analysis (PCA) revealed the dominant role of plankton metabolism and microbial activity on organic matter distribution, and the contribution of terrestrial organic matter to humus components through soil runoff. In summary, the seasonal variations in the Huai River water DOM were driven by both natural processes and human activities.</p></div>\",\"PeriodicalId\":55489,\"journal\":{\"name\":\"Aquatic Sciences\",\"volume\":\"87 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00027-025-01167-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00027-025-01167-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究了淮河(蚌埠段)干湿季节溶解有机质(DOM)的特征。采用三维荧光光谱(EEMs)结合平行因子分析(PARAFAC)和自组织神经网络(SOM)分析DOM水平和组成。结果表明,DOM腐殖质组分(C1)在水体中占主导地位,且存在显著的季节差异。雨季降雨和径流显著增加了腐殖质有机质的输入,且类腐殖质组分(C1和C2)的荧光强度和相对丰度在雨季均高于旱季。浮游生物代谢物(蛋白质样成分,C3)浓度在旱季较高,反映了低水流环境下微生物活动增加。主成分分析揭示了浮游生物代谢和微生物活动对有机质分布的主导作用,以及陆源有机质通过土壤径流对腐殖质组分的贡献。综上所述,淮河水体DOM的季节变化受自然过程和人类活动共同驱动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of dissolved organic matter in the Huai River (Bengbu section) during wet and dry seasons

This study investigated the characteristics of dissolved organic matter (DOM) in the Huai River (Bengbu section) in China during wet and dry seasons. The methods included three-dimensional fluorescence spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC) and self-organizing neural networks (SOM) to analyze DOM levels and composition. The results showed that the humus component (C1) of DOM was dominant in the water body, and there were significant seasonal differences. Rainfall and runoff significantly increased the input of humus organic matter in the wet season, and the fluorescence intensity and relative abundance of humic-like components (C1 and C2) were higher in the wet season than in the dry season. The concentration of plankton metabolites (protein-like component, C3) was higher in the dry season, reflecting increased microbial activity in the low water flow environment. Principal component analysis (PCA) revealed the dominant role of plankton metabolism and microbial activity on organic matter distribution, and the contribution of terrestrial organic matter to humus components through soil runoff. In summary, the seasonal variations in the Huai River water DOM were driven by both natural processes and human activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Sciences
Aquatic Sciences 环境科学-海洋与淡水生物学
CiteScore
3.90
自引率
4.20%
发文量
60
审稿时长
1 months
期刊介绍: Aquatic Sciences – Research Across Boundaries publishes original research, overviews, and reviews dealing with aquatic systems (both freshwater and marine systems) and their boundaries, including the impact of human activities on these systems. The coverage ranges from molecular-level mechanistic studies to investigations at the whole ecosystem scale. Aquatic Sciences publishes articles presenting research across disciplinary and environmental boundaries, including studies examining interactions among geological, microbial, biological, chemical, physical, hydrological, and societal processes, as well as studies assessing land-water, air-water, benthic-pelagic, river-ocean, lentic-lotic, and groundwater-surface water interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信