MalS是大肠杆菌的一种α-淀粉酶,与糖原具有独特的底物特异性

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Phuong Lan Tran, Minjee Yoo, Sung-Gun Kim, Jong-Tae Park
{"title":"MalS是大肠杆菌的一种α-淀粉酶,与糖原具有独特的底物特异性","authors":"Phuong Lan Tran,&nbsp;Minjee Yoo,&nbsp;Sung-Gun Kim,&nbsp;Jong-Tae Park","doi":"10.1007/s00253-025-13421-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigated MalS, a periplasmic α-enzyme from <i>Escherichia coli</i> K12, known for its unique biochemical properties related to polysaccharide utilization. Evolutionarily, MalS has inherited the glycosyl hydrolase catalytic domain from the glycoside hydrolase family 13, with the protein sequences highly conserved across <i>Enterobacteria</i>, including <i>Salmonella</i> and <i>Shigella</i>. MalS exhibited optimal activity at 65 °C, significantly higher than other <i>E. coli</i> enzymes. Although its reaction pattern resembled that of typical α-amylases, its catalytic efficiency on polysaccharides was notably lower. Intriguingly, MalS demonstrated a strong binding affinity for various glucose polymers, including β-cyclodextrin and glycogen, which significantly enhanced its thermostability. Despite full-length MalS binding strongly to glycogen, neither its N-terminal domain, predicted by AlphaFold2 to belong to the Carbohydrate-Binding Module family 69, nor the remaining parts of the enzyme showed binding affinity toward polysaccharides. Kinetic studies revealed that MalS had a 2.5-fold lower <i>K</i><sub>m</sub> and 1.4-fold higher catalytic efficiency toward glycogen compared to amylopectin, which contrasts starkly with pancreatic α-amylases. However, over prolonged reactions, glycogen hydrolysis by MalS was slower than that of amylopectin. In the early initial stage, MalS predominantly degraded glycogen to maltopentaose (G5) rather than maltohexaose (G6) as usual. Taken together, these findings suggest MalS may play a role in recognizing glycogen-type polysaccharides in the bacterial periplasm during adaptation to new environments. Given the crucial role of glycogen in the survival and infection processes of pathogenic bacteria, understanding MalS’s interaction with glycogen-type polysaccharides could offer valuable insights into bacterial survival mechanisms and their ability to infect hosts.</p><p>• <i>MalS has unique structure and properties but conserved among many enterobacteria</i></p><p>• <i>Binding of MalS with polysaccharides significantly enhanced its thermostability</i></p><p>• <i>Unlike other amylases, MalS showed 2.5-fold lower K</i><sub><i>m</i></sub><i> on glycogen than amylopectin</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13421-5.pdf","citationCount":"0","resultStr":"{\"title\":\"MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities\",\"authors\":\"Phuong Lan Tran,&nbsp;Minjee Yoo,&nbsp;Sung-Gun Kim,&nbsp;Jong-Tae Park\",\"doi\":\"10.1007/s00253-025-13421-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we investigated MalS, a periplasmic α-enzyme from <i>Escherichia coli</i> K12, known for its unique biochemical properties related to polysaccharide utilization. Evolutionarily, MalS has inherited the glycosyl hydrolase catalytic domain from the glycoside hydrolase family 13, with the protein sequences highly conserved across <i>Enterobacteria</i>, including <i>Salmonella</i> and <i>Shigella</i>. MalS exhibited optimal activity at 65 °C, significantly higher than other <i>E. coli</i> enzymes. Although its reaction pattern resembled that of typical α-amylases, its catalytic efficiency on polysaccharides was notably lower. Intriguingly, MalS demonstrated a strong binding affinity for various glucose polymers, including β-cyclodextrin and glycogen, which significantly enhanced its thermostability. Despite full-length MalS binding strongly to glycogen, neither its N-terminal domain, predicted by AlphaFold2 to belong to the Carbohydrate-Binding Module family 69, nor the remaining parts of the enzyme showed binding affinity toward polysaccharides. Kinetic studies revealed that MalS had a 2.5-fold lower <i>K</i><sub>m</sub> and 1.4-fold higher catalytic efficiency toward glycogen compared to amylopectin, which contrasts starkly with pancreatic α-amylases. However, over prolonged reactions, glycogen hydrolysis by MalS was slower than that of amylopectin. In the early initial stage, MalS predominantly degraded glycogen to maltopentaose (G5) rather than maltohexaose (G6) as usual. Taken together, these findings suggest MalS may play a role in recognizing glycogen-type polysaccharides in the bacterial periplasm during adaptation to new environments. Given the crucial role of glycogen in the survival and infection processes of pathogenic bacteria, understanding MalS’s interaction with glycogen-type polysaccharides could offer valuable insights into bacterial survival mechanisms and their ability to infect hosts.</p><p>• <i>MalS has unique structure and properties but conserved among many enterobacteria</i></p><p>• <i>Binding of MalS with polysaccharides significantly enhanced its thermostability</i></p><p>• <i>Unlike other amylases, MalS showed 2.5-fold lower K</i><sub><i>m</i></sub><i> on glycogen than amylopectin</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-025-13421-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-025-13421-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13421-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了MalS,一种来自大肠杆菌K12的周质α-酶,以其与多糖利用有关的独特生化特性而闻名。进化上,MalS继承了糖苷水解酶家族13的糖基水解酶催化结构域,其蛋白序列在包括沙门氏菌和志贺氏菌在内的肠杆菌中高度保守。MalS在65°C时表现出最佳活性,显著高于其他大肠杆菌酶。虽然其反应模式与典型α-淀粉酶相似,但其对多糖的催化效率明显较低。有趣的是,MalS对各种葡萄糖聚合物(包括β-环糊精和糖原)表现出很强的结合亲和力,这显著提高了其热稳定性。尽管全长MalS与糖原结合强烈,但其n端结构域(由AlphaFold2预测属于碳水化合物结合模块家族69)和酶的其余部分都没有显示出与多糖的结合亲和力。动力学研究表明,与支链淀粉相比,MalS对糖原的Km低2.5倍,催化效率高1.4倍,与胰腺α-淀粉酶形成鲜明对比。然而,在长时间的反应中,糖原被MalS水解的速度比支链淀粉慢。在早期初始阶段,MalS主要将糖原降解为麦芽糖戊糖酶(G5),而不是通常的麦芽糖己糖酶(G6)。综上所述,这些发现表明,在细菌适应新环境的过程中,MalS可能在识别糖原型多糖方面发挥作用。鉴于糖原在致病菌生存和感染过程中的重要作用,了解mal与糖原型多糖的相互作用可以为了解细菌的生存机制及其感染宿主的能力提供有价值的见解。•MalS具有独特的结构和性质,但在许多肠杆菌中保守•MalS与多糖结合显著增强其热稳定性•与其他淀粉酶不同,MalS在糖原上的Km比支链淀粉低2.5倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities

In this study, we investigated MalS, a periplasmic α-enzyme from Escherichia coli K12, known for its unique biochemical properties related to polysaccharide utilization. Evolutionarily, MalS has inherited the glycosyl hydrolase catalytic domain from the glycoside hydrolase family 13, with the protein sequences highly conserved across Enterobacteria, including Salmonella and Shigella. MalS exhibited optimal activity at 65 °C, significantly higher than other E. coli enzymes. Although its reaction pattern resembled that of typical α-amylases, its catalytic efficiency on polysaccharides was notably lower. Intriguingly, MalS demonstrated a strong binding affinity for various glucose polymers, including β-cyclodextrin and glycogen, which significantly enhanced its thermostability. Despite full-length MalS binding strongly to glycogen, neither its N-terminal domain, predicted by AlphaFold2 to belong to the Carbohydrate-Binding Module family 69, nor the remaining parts of the enzyme showed binding affinity toward polysaccharides. Kinetic studies revealed that MalS had a 2.5-fold lower Km and 1.4-fold higher catalytic efficiency toward glycogen compared to amylopectin, which contrasts starkly with pancreatic α-amylases. However, over prolonged reactions, glycogen hydrolysis by MalS was slower than that of amylopectin. In the early initial stage, MalS predominantly degraded glycogen to maltopentaose (G5) rather than maltohexaose (G6) as usual. Taken together, these findings suggest MalS may play a role in recognizing glycogen-type polysaccharides in the bacterial periplasm during adaptation to new environments. Given the crucial role of glycogen in the survival and infection processes of pathogenic bacteria, understanding MalS’s interaction with glycogen-type polysaccharides could offer valuable insights into bacterial survival mechanisms and their ability to infect hosts.

MalS has unique structure and properties but conserved among many enterobacteria

Binding of MalS with polysaccharides significantly enhanced its thermostability

Unlike other amylases, MalS showed 2.5-fold lower Km on glycogen than amylopectin

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信