基于稀疏矩阵向量乘法的PITD方法存储优化方案

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Liang Ma;Xikui Ma;Mingjun Chi;Ru Xiang;Xiaojie Zhu
{"title":"基于稀疏矩阵向量乘法的PITD方法存储优化方案","authors":"Liang Ma;Xikui Ma;Mingjun Chi;Ru Xiang;Xiaojie Zhu","doi":"10.1109/LMWT.2024.3516877","DOIUrl":null,"url":null,"abstract":"An improved variant of the precise-integration time-domain (PITD) method is proposed to eliminate the inverse matrix calculation and optimize the storage burden with the help of sparse computation. First, the dimensional expanding (DE) scheme is incorporated into PITD to address the matrix inversion problem due to external sources. Then, the dense matrix exponential is absorbed in sparse matrix-vector multiplications (SpMVs) without explicit evaluation. This SpMV-based technique involves only one sparse matrix and can utilize sparse computation efficiently, so as to greatly reduce memory costs ascribed to the matrix exponential. Moreover, the theoretical analysis of the algorithm performance is presented. The numerical results verify the validity and efficiency of the proposed method.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 2","pages":"145-148"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Storage Optimization Scheme for PITD Method Using Sparse Matrix-Vector Multiplication\",\"authors\":\"Liang Ma;Xikui Ma;Mingjun Chi;Ru Xiang;Xiaojie Zhu\",\"doi\":\"10.1109/LMWT.2024.3516877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improved variant of the precise-integration time-domain (PITD) method is proposed to eliminate the inverse matrix calculation and optimize the storage burden with the help of sparse computation. First, the dimensional expanding (DE) scheme is incorporated into PITD to address the matrix inversion problem due to external sources. Then, the dense matrix exponential is absorbed in sparse matrix-vector multiplications (SpMVs) without explicit evaluation. This SpMV-based technique involves only one sparse matrix and can utilize sparse computation efficiently, so as to greatly reduce memory costs ascribed to the matrix exponential. Moreover, the theoretical analysis of the algorithm performance is presented. The numerical results verify the validity and efficiency of the proposed method.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 2\",\"pages\":\"145-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813408/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10813408/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的时域精确积分(PITD)方法,消除了逆矩阵计算,并利用稀疏计算优化了存储负担。首先,将维数展开(DE)方法引入PITD中,解决了由外部源引起的矩阵反演问题。然后,在稀疏矩阵-向量乘法(spmv)中吸收密集矩阵指数,而不需要显式计算。这种基于spmv的方法只涉及一个稀疏矩阵,可以有效地利用稀疏计算,从而大大降低矩阵指数带来的内存开销。并对算法的性能进行了理论分析。数值结果验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Storage Optimization Scheme for PITD Method Using Sparse Matrix-Vector Multiplication
An improved variant of the precise-integration time-domain (PITD) method is proposed to eliminate the inverse matrix calculation and optimize the storage burden with the help of sparse computation. First, the dimensional expanding (DE) scheme is incorporated into PITD to address the matrix inversion problem due to external sources. Then, the dense matrix exponential is absorbed in sparse matrix-vector multiplications (SpMVs) without explicit evaluation. This SpMV-based technique involves only one sparse matrix and can utilize sparse computation efficiently, so as to greatly reduce memory costs ascribed to the matrix exponential. Moreover, the theoretical analysis of the algorithm performance is presented. The numerical results verify the validity and efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信