SISO多路径环境下基于ris的联合近场3D定位与同步

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS
Han Yan;Hua Chen;Wei Liu;Songjie Yang;Gang Wang;Chau Yuen
{"title":"SISO多路径环境下基于ris的联合近场3D定位与同步","authors":"Han Yan;Hua Chen;Wei Liu;Songjie Yang;Gang Wang;Chau Yuen","doi":"10.1109/TGCN.2024.3422992","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the challenges of reconfigurable intelligent surfaces (RIS)-aided 3D localization and synchronization in multipath environments, focusing on the near-field of mmWave systems. Specifically, a maximum likelihood (ML) estimation problem is formulated for the channel parameters. To initiate this process, we leverage a combination of canonical polyadic decomposition (CPD) and orthogonal matching pursuit (OMP) to obtain coarse estimates of the time of arrival (ToA) and angle of departure (AoD) under the far-field approximation. Subsequently, distances are estimated using <inline-formula> <tex-math>$l_{1}$ </tex-math></inline-formula>-regularization based on a near-field model. A refinement phase is introduced by employing the spatial alternating generalized expectation maximization (SAGE) algorithm. Finally, a weighted least squares approach is applied to convert channel parameters into position and clock offset estimates. To extend the estimation algorithm to ultra-large (UL) RIS-assisted localization scenarios, it is further enhanced to reduce errors associated with far-field approximations, especially in the presence of significant near-field effects, achieved by narrowing the RIS aperture. Moreover, the Cram<inline-formula> <tex-math>$\\acute {\\text {e}}$ </tex-math></inline-formula>r-Rao Bound (CRB) is derived and the RIS phase shifts are optimized to improve the positioning accuracy. Numerical results affirm the efficacy of the proposed estimation algorithm.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"9 1","pages":"367-379"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIS-Enabled Joint Near-Field 3D Localization and Synchronization in SISO Multipath Environments\",\"authors\":\"Han Yan;Hua Chen;Wei Liu;Songjie Yang;Gang Wang;Chau Yuen\",\"doi\":\"10.1109/TGCN.2024.3422992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we tackle the challenges of reconfigurable intelligent surfaces (RIS)-aided 3D localization and synchronization in multipath environments, focusing on the near-field of mmWave systems. Specifically, a maximum likelihood (ML) estimation problem is formulated for the channel parameters. To initiate this process, we leverage a combination of canonical polyadic decomposition (CPD) and orthogonal matching pursuit (OMP) to obtain coarse estimates of the time of arrival (ToA) and angle of departure (AoD) under the far-field approximation. Subsequently, distances are estimated using <inline-formula> <tex-math>$l_{1}$ </tex-math></inline-formula>-regularization based on a near-field model. A refinement phase is introduced by employing the spatial alternating generalized expectation maximization (SAGE) algorithm. Finally, a weighted least squares approach is applied to convert channel parameters into position and clock offset estimates. To extend the estimation algorithm to ultra-large (UL) RIS-assisted localization scenarios, it is further enhanced to reduce errors associated with far-field approximations, especially in the presence of significant near-field effects, achieved by narrowing the RIS aperture. Moreover, the Cram<inline-formula> <tex-math>$\\\\acute {\\\\text {e}}$ </tex-math></inline-formula>r-Rao Bound (CRB) is derived and the RIS phase shifts are optimized to improve the positioning accuracy. Numerical results affirm the efficacy of the proposed estimation algorithm.\",\"PeriodicalId\":13052,\"journal\":{\"name\":\"IEEE Transactions on Green Communications and Networking\",\"volume\":\"9 1\",\"pages\":\"367-379\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Green Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10585319/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10585319/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们解决了多路径环境下可重构智能表面(RIS)辅助3D定位和同步的挑战,重点关注毫米波系统的近场。具体来说,对信道参数提出了一个最大似然估计问题。为了启动这一过程,我们利用经典多进分解(CPD)和正交匹配追踪(OMP)的组合来获得远场近似下到达时间(ToA)和出发角(AoD)的粗略估计。随后,使用基于近场模型的$l_{1}$正则化估计距离。采用空间交替广义期望最大化(SAGE)算法引入了一个细化阶段。最后,采用加权最小二乘法将信道参数转换为位置和时钟偏移估计。为了将估计算法扩展到超大(UL) RIS辅助定位场景,进一步增强了该算法,以减少与远场近似相关的误差,特别是在存在显著的近场效应时,通过缩小RIS孔径来实现。此外,推导了Cram $\acute {\text {e}}$ r-Rao界(CRB),并对RIS相移进行了优化,提高了定位精度。数值结果验证了该估计算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RIS-Enabled Joint Near-Field 3D Localization and Synchronization in SISO Multipath Environments
In this paper, we tackle the challenges of reconfigurable intelligent surfaces (RIS)-aided 3D localization and synchronization in multipath environments, focusing on the near-field of mmWave systems. Specifically, a maximum likelihood (ML) estimation problem is formulated for the channel parameters. To initiate this process, we leverage a combination of canonical polyadic decomposition (CPD) and orthogonal matching pursuit (OMP) to obtain coarse estimates of the time of arrival (ToA) and angle of departure (AoD) under the far-field approximation. Subsequently, distances are estimated using $l_{1}$ -regularization based on a near-field model. A refinement phase is introduced by employing the spatial alternating generalized expectation maximization (SAGE) algorithm. Finally, a weighted least squares approach is applied to convert channel parameters into position and clock offset estimates. To extend the estimation algorithm to ultra-large (UL) RIS-assisted localization scenarios, it is further enhanced to reduce errors associated with far-field approximations, especially in the presence of significant near-field effects, achieved by narrowing the RIS aperture. Moreover, the Cram $\acute {\text {e}}$ r-Rao Bound (CRB) is derived and the RIS phase shifts are optimized to improve the positioning accuracy. Numerical results affirm the efficacy of the proposed estimation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信