热影响区对纳秒脉冲激光扫描烧蚀银纳米颗粒层的影响

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hee-Lak Lee , Arif Hussain , Yoon-Jae Moon , Jun Young Hwang , Seung Jae Moon
{"title":"热影响区对纳秒脉冲激光扫描烧蚀银纳米颗粒层的影响","authors":"Hee-Lak Lee ,&nbsp;Arif Hussain ,&nbsp;Yoon-Jae Moon ,&nbsp;Jun Young Hwang ,&nbsp;Seung Jae Moon","doi":"10.1016/j.cap.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Pulsed laser ablation can be used in printed electronics to remove silver (Ag) nanoparticle (NP) inks from undesired locations. Removing Ag NP involves a scanning ablation process, in which laser beams are irradiated on spots irradiated by a previous laser beam. In this study, that the heat-affected zone (HAZ), which is the peripheral area of the ablation crater where NPs are not ablated but are affected by heat, greatly influences the ablation aspects. Ablation failure was observed in short laser beam displacements, where the irradiated laser energy per unit length increased. Additional experimental investigation and thermal analysis concluded that property variations, such as increased reflectivity and thermal conductivity, suppressed the temperature increase and made it more difficult for the HAZ and nearby Ag NP to be ablated. Moreover, the ablated lines formed by a higher laser beam fluence and shorter laser beam displacement were not as ablated as the lines formed with a relatively lower laser beam fluence and longer laser beam displacement. Through detailed analysis, we deduced that the local fluence of the second laser beam irradiated on the HAZ was a more critical parameter than the peak fluence of the laser beam. We suggest that in the case of a Gaussian laser beam, the laser beam displacement should be equal to the radius of the ablation crater and HAZ to maximize the local fluence irradiated on the HAZ and minimize the adverse effects of the HAZ. The results can provide a guideline for future manufacturers to perform Ag NP layer ablation while considering the influence of the HAZ.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 65-77"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of heat-affected zone on the nanosecond pulsed laser scanning ablation of Ag nanoparticle layer\",\"authors\":\"Hee-Lak Lee ,&nbsp;Arif Hussain ,&nbsp;Yoon-Jae Moon ,&nbsp;Jun Young Hwang ,&nbsp;Seung Jae Moon\",\"doi\":\"10.1016/j.cap.2025.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pulsed laser ablation can be used in printed electronics to remove silver (Ag) nanoparticle (NP) inks from undesired locations. Removing Ag NP involves a scanning ablation process, in which laser beams are irradiated on spots irradiated by a previous laser beam. In this study, that the heat-affected zone (HAZ), which is the peripheral area of the ablation crater where NPs are not ablated but are affected by heat, greatly influences the ablation aspects. Ablation failure was observed in short laser beam displacements, where the irradiated laser energy per unit length increased. Additional experimental investigation and thermal analysis concluded that property variations, such as increased reflectivity and thermal conductivity, suppressed the temperature increase and made it more difficult for the HAZ and nearby Ag NP to be ablated. Moreover, the ablated lines formed by a higher laser beam fluence and shorter laser beam displacement were not as ablated as the lines formed with a relatively lower laser beam fluence and longer laser beam displacement. Through detailed analysis, we deduced that the local fluence of the second laser beam irradiated on the HAZ was a more critical parameter than the peak fluence of the laser beam. We suggest that in the case of a Gaussian laser beam, the laser beam displacement should be equal to the radius of the ablation crater and HAZ to maximize the local fluence irradiated on the HAZ and minimize the adverse effects of the HAZ. The results can provide a guideline for future manufacturers to perform Ag NP layer ablation while considering the influence of the HAZ.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"72 \",\"pages\":\"Pages 65-77\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156717392500029X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156717392500029X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

脉冲激光烧蚀可用于印刷电子去除银(Ag)纳米颗粒(NP)油墨从不需要的位置。去除银NP涉及扫描烧蚀过程,其中激光束照射在先前激光束照射过的斑点上。在本研究中,热影响区(HAZ)是烧蚀坑的外围区域,NPs未被烧蚀,但受热影响,对烧蚀方面影响很大。在较短的激光束位移中观察到烧蚀失效,单位长度的辐照激光能量增加。进一步的实验研究和热分析得出结论,反射率和导热系数的增加等性质变化抑制了温度的升高,使热影响区和附近的Ag NP更难被烧蚀。较高的激光束能量和较短的激光束位移所形成的烧蚀线不如较低的激光束能量和较长的激光束位移所形成的烧蚀线。通过详细的分析,我们推断出第二束照射在热影响区上的局部能量比激光束的峰值能量更重要。我们建议,在高斯激光束的情况下,激光束的位移应等于烧蚀坑和热区半径,以最大限度地提高辐射对热区的局部影响,最大限度地减少热区的不利影响。研究结果可为今后在考虑热影响的情况下进行银NP层烧蚀提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of heat-affected zone on the nanosecond pulsed laser scanning ablation of Ag nanoparticle layer

Effect of heat-affected zone on the nanosecond pulsed laser scanning ablation of Ag nanoparticle layer
Pulsed laser ablation can be used in printed electronics to remove silver (Ag) nanoparticle (NP) inks from undesired locations. Removing Ag NP involves a scanning ablation process, in which laser beams are irradiated on spots irradiated by a previous laser beam. In this study, that the heat-affected zone (HAZ), which is the peripheral area of the ablation crater where NPs are not ablated but are affected by heat, greatly influences the ablation aspects. Ablation failure was observed in short laser beam displacements, where the irradiated laser energy per unit length increased. Additional experimental investigation and thermal analysis concluded that property variations, such as increased reflectivity and thermal conductivity, suppressed the temperature increase and made it more difficult for the HAZ and nearby Ag NP to be ablated. Moreover, the ablated lines formed by a higher laser beam fluence and shorter laser beam displacement were not as ablated as the lines formed with a relatively lower laser beam fluence and longer laser beam displacement. Through detailed analysis, we deduced that the local fluence of the second laser beam irradiated on the HAZ was a more critical parameter than the peak fluence of the laser beam. We suggest that in the case of a Gaussian laser beam, the laser beam displacement should be equal to the radius of the ablation crater and HAZ to maximize the local fluence irradiated on the HAZ and minimize the adverse effects of the HAZ. The results can provide a guideline for future manufacturers to perform Ag NP layer ablation while considering the influence of the HAZ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信