高效深蓝有机发光二极管的最新进展

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
S. Sreejith , J. Ajayan , N.V. Uma Reddy , M. Manikandan , S. Umamaheswaran , N.V. Raghavendra Reddy
{"title":"高效深蓝有机发光二极管的最新进展","authors":"S. Sreejith ,&nbsp;J. Ajayan ,&nbsp;N.V. Uma Reddy ,&nbsp;M. Manikandan ,&nbsp;S. Umamaheswaran ,&nbsp;N.V. Raghavendra Reddy","doi":"10.1016/j.micrna.2025.208101","DOIUrl":null,"url":null,"abstract":"<div><div>OLEDs (organic LEDs) are thought to be the most competitive alternative for next-generation transparent and flexible displays. Due to its unique characteristics, which include enhanced efficiency, lesser cost, ease of processing, and flexibility, OLEDs have drawn a lot of attention and have already been put to use in flat-panel full-colour displays and in systems of solid lighting-state. Solid-state-lighting and full-colour displays both benefit greatly from the use of efficient blue OLEDs. Deep blue (DB) emitting substances, in particular, not just serve as a donor of energy for low-energy dopants to create green, white and red, but they also improve the colour spectrum and lower the amount of power used. However, low efficiency and limited working lifetime of DB-OLEDs limit their suitability for commercial use in comparison to green &amp; red-light OLEDs. Because of their inherent large band-gap, DB materials continue to lag significantly behind green &amp; red organic emitters in terms of quantum-efficiency (QE), colour quality, and charge mobility, making the creation of extremely effective DB fluorescent substances an urgent and challenging research topic. This review article examines the structural designs and materials used in DB-OLED fabrication that enhance their efficiency and stability along with the challenges in their fabrication, and their future application prospects.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208101"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in high efficiency deep blue organic light emitting diodes\",\"authors\":\"S. Sreejith ,&nbsp;J. Ajayan ,&nbsp;N.V. Uma Reddy ,&nbsp;M. Manikandan ,&nbsp;S. Umamaheswaran ,&nbsp;N.V. Raghavendra Reddy\",\"doi\":\"10.1016/j.micrna.2025.208101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>OLEDs (organic LEDs) are thought to be the most competitive alternative for next-generation transparent and flexible displays. Due to its unique characteristics, which include enhanced efficiency, lesser cost, ease of processing, and flexibility, OLEDs have drawn a lot of attention and have already been put to use in flat-panel full-colour displays and in systems of solid lighting-state. Solid-state-lighting and full-colour displays both benefit greatly from the use of efficient blue OLEDs. Deep blue (DB) emitting substances, in particular, not just serve as a donor of energy for low-energy dopants to create green, white and red, but they also improve the colour spectrum and lower the amount of power used. However, low efficiency and limited working lifetime of DB-OLEDs limit their suitability for commercial use in comparison to green &amp; red-light OLEDs. Because of their inherent large band-gap, DB materials continue to lag significantly behind green &amp; red organic emitters in terms of quantum-efficiency (QE), colour quality, and charge mobility, making the creation of extremely effective DB fluorescent substances an urgent and challenging research topic. This review article examines the structural designs and materials used in DB-OLED fabrication that enhance their efficiency and stability along with the challenges in their fabrication, and their future application prospects.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"200 \",\"pages\":\"Article 208101\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

oled(有机发光二极管)被认为是下一代透明和柔性显示器最具竞争力的替代品。由于其独特的特性,包括更高的效率,更低的成本,易于加工和灵活性,有机发光二极管已经引起了广泛的关注,并已被用于平板全彩显示器和固体照明系统。固态照明和全彩显示都得益于高效蓝光oled的使用。尤其是深蓝(DB)发光物质,它不仅可以为低能量掺杂剂提供能量,产生绿色、白色和红色,而且还可以改善光谱,降低能耗。然而,与绿色发光二极管相比,db - oled的低效率和有限的工作寿命限制了其商业应用的适用性。红灯oled。由于其固有的大带隙,DB材料继续明显落后于绿色材料。红色有机发光体在量子效率(QE)、色彩质量和电荷迁移率方面的研究,使得创造极有效的DB荧光物质成为一个紧迫而具有挑战性的研究课题。本文综述了dboled的结构设计和材料,以提高其效率和稳定性,同时也讨论了dboled在制造过程中所面临的挑战,以及它们未来的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advancements in high efficiency deep blue organic light emitting diodes
OLEDs (organic LEDs) are thought to be the most competitive alternative for next-generation transparent and flexible displays. Due to its unique characteristics, which include enhanced efficiency, lesser cost, ease of processing, and flexibility, OLEDs have drawn a lot of attention and have already been put to use in flat-panel full-colour displays and in systems of solid lighting-state. Solid-state-lighting and full-colour displays both benefit greatly from the use of efficient blue OLEDs. Deep blue (DB) emitting substances, in particular, not just serve as a donor of energy for low-energy dopants to create green, white and red, but they also improve the colour spectrum and lower the amount of power used. However, low efficiency and limited working lifetime of DB-OLEDs limit their suitability for commercial use in comparison to green & red-light OLEDs. Because of their inherent large band-gap, DB materials continue to lag significantly behind green & red organic emitters in terms of quantum-efficiency (QE), colour quality, and charge mobility, making the creation of extremely effective DB fluorescent substances an urgent and challenging research topic. This review article examines the structural designs and materials used in DB-OLED fabrication that enhance their efficiency and stability along with the challenges in their fabrication, and their future application prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信