微流控阻抗感应区分癌细胞状态:迈向即时诊断的一步

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Mahtab Kokabi , Gulam M. Rather , Mehdi Javanmard
{"title":"微流控阻抗感应区分癌细胞状态:迈向即时诊断的一步","authors":"Mahtab Kokabi ,&nbsp;Gulam M. Rather ,&nbsp;Mehdi Javanmard","doi":"10.1016/j.biosx.2025.100589","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employed a custom microfluidic sensor to measure the electrical impedance of cancer cells, aiming to differentiate between suspension and adherent phenotypes. We investigated three suspension cell lines—JeKo-1, MM-1R, and Maver-1—representing hematological malignancies, and two adherent breast cancer cell lines—MDA-MB-231 and MDA- MB-468. The impedance measurements revealed significant differences corresponding to the cells’ growth patterns. Suspension cells exhibited lower median impedance values compared to adherent cells, likely due to variations in cell size, complexity, and membrane properties. Suspension cells, being smaller and less structurally complex, demonstrated reduced impedance, whereas adherent cells, which are larger and form stronger surface attachments, displayed higher impedance values. These findings highlight the potential of electrical impedance as a tool for distinguishing cancer cell types. To further validate these results, we propose focusing on the transition of a single cancer cell type between adherent and suspension states, simulating in vitro cancer proliferation conditions. This approach will provide a deeper understanding of how electrical properties evolve during this transition and may offer insights into distinguishing between benign and metastatic cancers or assessing metastatic stages. The observed reduction in impedance during the adherent-to-suspension transition supports the potential diagnostic utility of this method. Overall, this study demonstrates that electrical impedance provides a rapid, label-free approach for enhancing cancer cell diagnostics based on distinct electrical characteristics.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"23 ","pages":"Article 100589"},"PeriodicalIF":10.6100,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic impedance sensing distinguishes cancer cell states: A step towards point-of-care diagnostics\",\"authors\":\"Mahtab Kokabi ,&nbsp;Gulam M. Rather ,&nbsp;Mehdi Javanmard\",\"doi\":\"10.1016/j.biosx.2025.100589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we employed a custom microfluidic sensor to measure the electrical impedance of cancer cells, aiming to differentiate between suspension and adherent phenotypes. We investigated three suspension cell lines—JeKo-1, MM-1R, and Maver-1—representing hematological malignancies, and two adherent breast cancer cell lines—MDA-MB-231 and MDA- MB-468. The impedance measurements revealed significant differences corresponding to the cells’ growth patterns. Suspension cells exhibited lower median impedance values compared to adherent cells, likely due to variations in cell size, complexity, and membrane properties. Suspension cells, being smaller and less structurally complex, demonstrated reduced impedance, whereas adherent cells, which are larger and form stronger surface attachments, displayed higher impedance values. These findings highlight the potential of electrical impedance as a tool for distinguishing cancer cell types. To further validate these results, we propose focusing on the transition of a single cancer cell type between adherent and suspension states, simulating in vitro cancer proliferation conditions. This approach will provide a deeper understanding of how electrical properties evolve during this transition and may offer insights into distinguishing between benign and metastatic cancers or assessing metastatic stages. The observed reduction in impedance during the adherent-to-suspension transition supports the potential diagnostic utility of this method. Overall, this study demonstrates that electrical impedance provides a rapid, label-free approach for enhancing cancer cell diagnostics based on distinct electrical characteristics.</div></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"23 \",\"pages\":\"Article 100589\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137025000160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们采用定制的微流体传感器来测量癌细胞的电阻抗,旨在区分悬浮型和粘附型表型。我们研究了三种悬浮细胞系- jeko -1, MM-1R和mavero -1代表血液恶性肿瘤,以及两种贴壁乳腺癌细胞系- MDA- mb -231和MDA- MB-468。阻抗测量显示了细胞生长模式的显著差异。与贴壁细胞相比,悬浮细胞表现出较低的中位阻抗值,这可能是由于细胞大小、复杂性和膜特性的变化。悬浮细胞体积更小,结构更简单,阻抗降低,而贴壁细胞体积更大,表面附着力更强,阻抗值更高。这些发现突出了电阻抗作为区分癌细胞类型的工具的潜力。为了进一步验证这些结果,我们建议关注单一癌细胞类型在贴壁和悬浮状态之间的转变,模拟体外癌症增殖条件。这种方法将更深入地了解电学性质在这种转变过程中是如何演变的,并可能为区分良性和转移性癌症或评估转移阶段提供见解。在粘附到悬浮过渡期间观察到的阻抗降低支持了该方法的潜在诊断效用。总的来说,这项研究表明,电阻抗提供了一种快速、无标记的方法,可以基于不同的电特征来增强癌细胞诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microfluidic impedance sensing distinguishes cancer cell states: A step towards point-of-care diagnostics
In this study, we employed a custom microfluidic sensor to measure the electrical impedance of cancer cells, aiming to differentiate between suspension and adherent phenotypes. We investigated three suspension cell lines—JeKo-1, MM-1R, and Maver-1—representing hematological malignancies, and two adherent breast cancer cell lines—MDA-MB-231 and MDA- MB-468. The impedance measurements revealed significant differences corresponding to the cells’ growth patterns. Suspension cells exhibited lower median impedance values compared to adherent cells, likely due to variations in cell size, complexity, and membrane properties. Suspension cells, being smaller and less structurally complex, demonstrated reduced impedance, whereas adherent cells, which are larger and form stronger surface attachments, displayed higher impedance values. These findings highlight the potential of electrical impedance as a tool for distinguishing cancer cell types. To further validate these results, we propose focusing on the transition of a single cancer cell type between adherent and suspension states, simulating in vitro cancer proliferation conditions. This approach will provide a deeper understanding of how electrical properties evolve during this transition and may offer insights into distinguishing between benign and metastatic cancers or assessing metastatic stages. The observed reduction in impedance during the adherent-to-suspension transition supports the potential diagnostic utility of this method. Overall, this study demonstrates that electrical impedance provides a rapid, label-free approach for enhancing cancer cell diagnostics based on distinct electrical characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信