标志流形上Toeplitz量化的表示理论方法

IF 1.6 2区 数学 Q1 MATHEMATICS
Matthew Dawson, Yessica Hernández-Eliseo
{"title":"标志流形上Toeplitz量化的表示理论方法","authors":"Matthew Dawson,&nbsp;Yessica Hernández-Eliseo","doi":"10.1016/j.jfa.2025.110877","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study Toeplitz operators on generalized flag manifolds of compact Lie groups using a representation-theoretic point of view. We prove several basic properties of these Toeplitz operators, including an abstract formula for their matrix coefficients in terms of the decomposition of certain tensor product representations. We also show how to identify large commuting families of Toeplitz operators based on invariance of their symbols under certain subgroups. Finally, we realize the Berezin transform as a convolution with certain functions that form an approximate identity on the generalized flag manifold, which allows us to prove a Szegő Limit Theorem using certain results due to Hirschman, Liang, and Wilson.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 9","pages":"Article 110877"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A representation-theoretic approach to Toeplitz quantization on flag manifolds\",\"authors\":\"Matthew Dawson,&nbsp;Yessica Hernández-Eliseo\",\"doi\":\"10.1016/j.jfa.2025.110877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study Toeplitz operators on generalized flag manifolds of compact Lie groups using a representation-theoretic point of view. We prove several basic properties of these Toeplitz operators, including an abstract formula for their matrix coefficients in terms of the decomposition of certain tensor product representations. We also show how to identify large commuting families of Toeplitz operators based on invariance of their symbols under certain subgroups. Finally, we realize the Berezin transform as a convolution with certain functions that form an approximate identity on the generalized flag manifold, which allows us to prove a Szegő Limit Theorem using certain results due to Hirschman, Liang, and Wilson.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 9\",\"pages\":\"Article 110877\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500059X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500059X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从表示论的角度研究了紧李群广义标志流形上的Toeplitz算子。我们证明了这些Toeplitz算子的几个基本性质,包括它们的矩阵系数在某些张量积表示的分解中的一个抽象公式。我们还展示了如何基于Toeplitz算子符号在某些子群下的不变性来识别Toeplitz算子的大交换族。最后,我们将Berezin变换实现为与某些函数的卷积,这些函数在广义标志流形上形成近似恒等,这使我们能够利用Hirschman, Liang和Wilson的某些结果证明塞格格极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A representation-theoretic approach to Toeplitz quantization on flag manifolds
In this paper, we study Toeplitz operators on generalized flag manifolds of compact Lie groups using a representation-theoretic point of view. We prove several basic properties of these Toeplitz operators, including an abstract formula for their matrix coefficients in terms of the decomposition of certain tensor product representations. We also show how to identify large commuting families of Toeplitz operators based on invariance of their symbols under certain subgroups. Finally, we realize the Berezin transform as a convolution with certain functions that form an approximate identity on the generalized flag manifold, which allows us to prove a Szegő Limit Theorem using certain results due to Hirschman, Liang, and Wilson.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信