LiNiO2的容量衰减:原子动力学图

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Penghao Xiao*, 
{"title":"LiNiO2的容量衰减:原子动力学图","authors":"Penghao Xiao*,&nbsp;","doi":"10.1021/acsenergylett.4c0327110.1021/acsenergylett.4c03271","DOIUrl":null,"url":null,"abstract":"<p >High-Ni layered oxides experience significant capacity decay over cycling, but the underlying mechanisms remain controversial. Using atomistic simulations, the electrochemical behavior of the fatigue phase is reproduced: a surface densified phase traps the last 25% of Li at the end of charge, while discharge remains unimpeded. When the Li content falls to 25%, the remaining Li is locked into a superlattice, making the creation of Li vacancies the rate-limiting step for further delithiation. After cycling, the surface densified phase resembles Ni<sub>5</sub>O<sub>8</sub>, with 25% Ni in the Li layer forming a similar superlattice. Ni pins nearby Li, suppressing Li vacancy formation at the surface and kinetically trapping Li inside. Meanwhile, the Ni<sub>5</sub>O<sub>8</sub> phase exhibits high diffusivity for Li interstitials in the superlattice, which explains the minimal resistance increase during discharge at the same Li content. Further densification leads to a surface phase that hinders both the charge and discharge across the entire voltage range.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 2","pages":"639–646 639–646"},"PeriodicalIF":18.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacity Decay in LiNiO2: An Atomistic Kinetic Picture\",\"authors\":\"Penghao Xiao*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.4c0327110.1021/acsenergylett.4c03271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-Ni layered oxides experience significant capacity decay over cycling, but the underlying mechanisms remain controversial. Using atomistic simulations, the electrochemical behavior of the fatigue phase is reproduced: a surface densified phase traps the last 25% of Li at the end of charge, while discharge remains unimpeded. When the Li content falls to 25%, the remaining Li is locked into a superlattice, making the creation of Li vacancies the rate-limiting step for further delithiation. After cycling, the surface densified phase resembles Ni<sub>5</sub>O<sub>8</sub>, with 25% Ni in the Li layer forming a similar superlattice. Ni pins nearby Li, suppressing Li vacancy formation at the surface and kinetically trapping Li inside. Meanwhile, the Ni<sub>5</sub>O<sub>8</sub> phase exhibits high diffusivity for Li interstitials in the superlattice, which explains the minimal resistance increase during discharge at the same Li content. Further densification leads to a surface phase that hinders both the charge and discharge across the entire voltage range.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 2\",\"pages\":\"639–646 639–646\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c03271\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c03271","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高镍层状氧化物在循环过程中经历了显著的容量衰减,但潜在的机制仍然存在争议。通过原子模拟,再现了疲劳相的电化学行为:在充电结束时,表面致密相捕获了最后25%的锂,而放电仍然畅通无阻。当Li含量下降到25%时,剩余的Li被锁定在一个超晶格中,使得Li空位的产生成为进一步衰减的限速步骤。循环后,表面致密相类似Ni5O8, Li层中25%的Ni形成类似的超晶格。Ni引脚在Li附近,抑制了表面Li空位的形成,并在动力学上捕获了Li。同时,Ni5O8相对超晶格中的Li间隙具有较高的扩散率,这解释了在相同Li含量下放电时电阻增加最小的原因。进一步致密化会导致表面相阻碍整个电压范围内的充电和放电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Capacity Decay in LiNiO2: An Atomistic Kinetic Picture

Capacity Decay in LiNiO2: An Atomistic Kinetic Picture

High-Ni layered oxides experience significant capacity decay over cycling, but the underlying mechanisms remain controversial. Using atomistic simulations, the electrochemical behavior of the fatigue phase is reproduced: a surface densified phase traps the last 25% of Li at the end of charge, while discharge remains unimpeded. When the Li content falls to 25%, the remaining Li is locked into a superlattice, making the creation of Li vacancies the rate-limiting step for further delithiation. After cycling, the surface densified phase resembles Ni5O8, with 25% Ni in the Li layer forming a similar superlattice. Ni pins nearby Li, suppressing Li vacancy formation at the surface and kinetically trapping Li inside. Meanwhile, the Ni5O8 phase exhibits high diffusivity for Li interstitials in the superlattice, which explains the minimal resistance increase during discharge at the same Li content. Further densification leads to a surface phase that hinders both the charge and discharge across the entire voltage range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信