{"title":"热响应型可注射微球糖肽水凝胶用于重塑动态细胞微环境","authors":"Penghui Wang, Yingying Yang, Yudong Yin, Hua Zhang, Tianqi Shi, Wenjie Zhang, Huiyun Liao, Shuang Li, Xiaoyan Tan, Zheng Yao* and Bo Chi*, ","doi":"10.1021/acsapm.4c0274010.1021/acsapm.4c02740","DOIUrl":null,"url":null,"abstract":"<p >Hydrogel microspheres have attracted extensive attention as the key carriers for drug delivery and cell culture. The traditional microspheres are limited in their application in the regenerative medicine fields due to their closed surface structure and biological inertness. To this end, this study used polylactic acid and selenocysteine modified hyaluronic acid through microfluidic technology and a microsphere surface modification strategy to prepare a hydrogel porous microsphere with reactive oxygen species (ROS) responsive properties and achieved effective removal of ROS through Se–Se rupture. It was then incorporated into a glycopeptide hydrogel, cross-linked by polyglutamic acid and hyaluronic acid, incorporating poloxamer. The glycopeptide hydrogels/microspheres with temperature response characteristics were prepared to reconstruct the dynamic microenvironment required for the repair and regeneration of damaged tissues. The interaction between dynamic and static bonds in the hydrogel system gives the microsphere composite hydrogel excellent injectability, mechanical strength, structural stability, organizational adaptability, and biocompatibility. It can be used as a tissue implant material in the field of tissue regeneration and cell microenvironment reconstruction with a broad application potential.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 3","pages":"1236–1248 1236–1248"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoresponsive Injectable Microsphere Glycopeptide Hydrogels for Remodeling Dynamic Cell Microenvironments\",\"authors\":\"Penghui Wang, Yingying Yang, Yudong Yin, Hua Zhang, Tianqi Shi, Wenjie Zhang, Huiyun Liao, Shuang Li, Xiaoyan Tan, Zheng Yao* and Bo Chi*, \",\"doi\":\"10.1021/acsapm.4c0274010.1021/acsapm.4c02740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogel microspheres have attracted extensive attention as the key carriers for drug delivery and cell culture. The traditional microspheres are limited in their application in the regenerative medicine fields due to their closed surface structure and biological inertness. To this end, this study used polylactic acid and selenocysteine modified hyaluronic acid through microfluidic technology and a microsphere surface modification strategy to prepare a hydrogel porous microsphere with reactive oxygen species (ROS) responsive properties and achieved effective removal of ROS through Se–Se rupture. It was then incorporated into a glycopeptide hydrogel, cross-linked by polyglutamic acid and hyaluronic acid, incorporating poloxamer. The glycopeptide hydrogels/microspheres with temperature response characteristics were prepared to reconstruct the dynamic microenvironment required for the repair and regeneration of damaged tissues. The interaction between dynamic and static bonds in the hydrogel system gives the microsphere composite hydrogel excellent injectability, mechanical strength, structural stability, organizational adaptability, and biocompatibility. It can be used as a tissue implant material in the field of tissue regeneration and cell microenvironment reconstruction with a broad application potential.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 3\",\"pages\":\"1236–1248 1236–1248\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c02740\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c02740","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermoresponsive Injectable Microsphere Glycopeptide Hydrogels for Remodeling Dynamic Cell Microenvironments
Hydrogel microspheres have attracted extensive attention as the key carriers for drug delivery and cell culture. The traditional microspheres are limited in their application in the regenerative medicine fields due to their closed surface structure and biological inertness. To this end, this study used polylactic acid and selenocysteine modified hyaluronic acid through microfluidic technology and a microsphere surface modification strategy to prepare a hydrogel porous microsphere with reactive oxygen species (ROS) responsive properties and achieved effective removal of ROS through Se–Se rupture. It was then incorporated into a glycopeptide hydrogel, cross-linked by polyglutamic acid and hyaluronic acid, incorporating poloxamer. The glycopeptide hydrogels/microspheres with temperature response characteristics were prepared to reconstruct the dynamic microenvironment required for the repair and regeneration of damaged tissues. The interaction between dynamic and static bonds in the hydrogel system gives the microsphere composite hydrogel excellent injectability, mechanical strength, structural stability, organizational adaptability, and biocompatibility. It can be used as a tissue implant material in the field of tissue regeneration and cell microenvironment reconstruction with a broad application potential.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.