天然磁铁矿/磁黄铁矿复合材料增强型电动力学法修复Cr(VI

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Chuanye Zhou, Xiang Ji, Hongrui Ding*, Xiao Ge, Yanyan Li, Fengyin Chen, Changqiu Wang, Yan Li and Anhuai Lu*, 
{"title":"天然磁铁矿/磁黄铁矿复合材料增强型电动力学法修复Cr(VI","authors":"Chuanye Zhou,&nbsp;Xiang Ji,&nbsp;Hongrui Ding*,&nbsp;Xiao Ge,&nbsp;Yanyan Li,&nbsp;Fengyin Chen,&nbsp;Changqiu Wang,&nbsp;Yan Li and Anhuai Lu*,&nbsp;","doi":"10.1021/acsestengg.4c0043410.1021/acsestengg.4c00434","DOIUrl":null,"url":null,"abstract":"<p >Cr(VI) contamination is a significant environmental issue, whereas existing remediation technologies, whether physical, chemical, or biological, have many limitations, such as extensive engineering work, high energy consumption, secondary pollution, and incomplete treatment. Here, we report a Cr(VI) remediation method that integrates a natural magnetite/pyrrhotite composite (NMPC) with electrokinetic processes to enhance the remediation efficiency and stability, in which the electron-donating ability of NMPC was utilized to boost the reduction and immobilization of Cr(VI). The XRD analysis shows that NMPC is composed of magnetite and pyrrhotite. A highest 100% Cr(VI) removal efficiency and a TCr removal efficiency over 95% are achieved when treating Cr(VI) contaminants. The remediation stability analysis shows that the redissolution ratio of Cr(VI) in the NMPC-enhanced treatment decreased by more than 62%, indicating that the Cr-containing products were stable and resistant to releasing Cr. Furthermore, the Cr-containing products are analyzed by SEM-EDS, Raman, XRD, and XPS. The results show that the distribution of Cr and Fe is highly correlated and Cr is immobilized in the mineral phase. These results demonstrate that NMPC enhances the removal of Cr(VI) and promotes the immobilization of Cr, thus reducing the risk of Cr reoxidation and contributing to a more durable remediation effect.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"358–365 358–365"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Stable Cr(VI) Remediation Using Enhanced Electrokinetic Method with a Natural Magnetite/Pyrrhotite Composite\",\"authors\":\"Chuanye Zhou,&nbsp;Xiang Ji,&nbsp;Hongrui Ding*,&nbsp;Xiao Ge,&nbsp;Yanyan Li,&nbsp;Fengyin Chen,&nbsp;Changqiu Wang,&nbsp;Yan Li and Anhuai Lu*,&nbsp;\",\"doi\":\"10.1021/acsestengg.4c0043410.1021/acsestengg.4c00434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cr(VI) contamination is a significant environmental issue, whereas existing remediation technologies, whether physical, chemical, or biological, have many limitations, such as extensive engineering work, high energy consumption, secondary pollution, and incomplete treatment. Here, we report a Cr(VI) remediation method that integrates a natural magnetite/pyrrhotite composite (NMPC) with electrokinetic processes to enhance the remediation efficiency and stability, in which the electron-donating ability of NMPC was utilized to boost the reduction and immobilization of Cr(VI). The XRD analysis shows that NMPC is composed of magnetite and pyrrhotite. A highest 100% Cr(VI) removal efficiency and a TCr removal efficiency over 95% are achieved when treating Cr(VI) contaminants. The remediation stability analysis shows that the redissolution ratio of Cr(VI) in the NMPC-enhanced treatment decreased by more than 62%, indicating that the Cr-containing products were stable and resistant to releasing Cr. Furthermore, the Cr-containing products are analyzed by SEM-EDS, Raman, XRD, and XPS. The results show that the distribution of Cr and Fe is highly correlated and Cr is immobilized in the mineral phase. These results demonstrate that NMPC enhances the removal of Cr(VI) and promotes the immobilization of Cr, thus reducing the risk of Cr reoxidation and contributing to a more durable remediation effect.</p>\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"5 2\",\"pages\":\"358–365 358–365\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestengg.4c00434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

铬(VI)污染是一个重大的环境问题,而现有的修复技术,无论是物理的、化学的还是生物的,都存在工程工作量大、能耗高、二次污染、处理不彻底等诸多局限性。本文报道了一种将天然磁铁矿/磁黄铁矿复合材料(NMPC)与电动力学结合的Cr(VI)修复方法,该方法利用NMPC的给电子能力促进Cr(VI)的还原和固定化,以提高修复效率和稳定性。XRD分析表明,NMPC由磁铁矿和磁黄铁矿组成。处理Cr(VI)污染物时,Cr(VI)去除率最高可达100%,TCr去除率可达95%以上。修复稳定性分析表明,在nmpc增强处理下,Cr(VI)的再溶率降低了62%以上,表明含Cr产物稳定且不易释放Cr。此外,通过SEM-EDS、Raman、XRD和XPS对含Cr产物进行了分析。结果表明:Cr和Fe的分布高度相关,Cr被固定在矿物相中。这些结果表明,NMPC增强了Cr(VI)的去除,促进了Cr的固定化,从而降低了Cr再氧化的风险,并有助于更持久的修复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient and Stable Cr(VI) Remediation Using Enhanced Electrokinetic Method with a Natural Magnetite/Pyrrhotite Composite

Efficient and Stable Cr(VI) Remediation Using Enhanced Electrokinetic Method with a Natural Magnetite/Pyrrhotite Composite

Cr(VI) contamination is a significant environmental issue, whereas existing remediation technologies, whether physical, chemical, or biological, have many limitations, such as extensive engineering work, high energy consumption, secondary pollution, and incomplete treatment. Here, we report a Cr(VI) remediation method that integrates a natural magnetite/pyrrhotite composite (NMPC) with electrokinetic processes to enhance the remediation efficiency and stability, in which the electron-donating ability of NMPC was utilized to boost the reduction and immobilization of Cr(VI). The XRD analysis shows that NMPC is composed of magnetite and pyrrhotite. A highest 100% Cr(VI) removal efficiency and a TCr removal efficiency over 95% are achieved when treating Cr(VI) contaminants. The remediation stability analysis shows that the redissolution ratio of Cr(VI) in the NMPC-enhanced treatment decreased by more than 62%, indicating that the Cr-containing products were stable and resistant to releasing Cr. Furthermore, the Cr-containing products are analyzed by SEM-EDS, Raman, XRD, and XPS. The results show that the distribution of Cr and Fe is highly correlated and Cr is immobilized in the mineral phase. These results demonstrate that NMPC enhances the removal of Cr(VI) and promotes the immobilization of Cr, thus reducing the risk of Cr reoxidation and contributing to a more durable remediation effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信