鼠牙本质微观结构易碎性的遗传基础:来自2型糖尿病的见解

IF 2.6 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Hideaki Inagawa , Chie Watanabe , Jun Zhou , Yasutaka Sugamori , Noriyuki Wakabayashi , Kazuhiro Aoki , Yo Shibata
{"title":"鼠牙本质微观结构易碎性的遗传基础:来自2型糖尿病的见解","authors":"Hideaki Inagawa ,&nbsp;Chie Watanabe ,&nbsp;Jun Zhou ,&nbsp;Yasutaka Sugamori ,&nbsp;Noriyuki Wakabayashi ,&nbsp;Kazuhiro Aoki ,&nbsp;Yo Shibata","doi":"10.1016/j.job.2025.100629","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Diabetes mellitus (DM) is a health issue affecting millions of people worldwide. Prolonged hyperglycemia increases the risk of pathological fractures; however, verifying this risk through bone analysis is challenging because of the heterogeneity of bone.</div></div><div><h3>Methods</h3><div>The systemic effects of type 2 DM (T2DM) on calcified tissues were investigated by examining dentin in mice, focusing on the underlying cellular and molecular mechanisms. Mouse incisor dentin was selected because of its continuous growth, similar to the annual rings of wood, offering a unique opportunity to study the time-dependent deterioration of calcified tissue affected by T2DM. RNA sequencing of pulp-derived cells was used to identify transcriptomic alterations in a db/db mouse model (BKS.cg-Lepr[db]/Lepr[<em>db</em>]Jc). Structural and mechanical changes in dentin were evaluated using Raman spectroscopy and nanoindentation.</div></div><div><h3>Results</h3><div>There was an increase in dentin volume in diabetic mice, accompanied by a deterioration in mechanical properties, particularly in primary dentin. This mechanical deterioration is likely to be associated with an inflammation-driven formation of abnormal dentin matrix caused by long-term hyperglycemia. No significant differences were observed in cross-linked collagen structures or advanced glycation end products.</div></div><div><h3>Conclusions</h3><div>The findings demonstrated that gene expression in T2DM affects dentin and bone, contributing to micro-structural fragility through protein production. The incisor model used in this study proved to be a versatile tool for assessing other diseases that affect the integrity of calcified tissues over time.</div></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"67 1","pages":"Article 100629"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genetic basis of micro-structural fragility in murine dentin: Insights from type 2 diabetes mellitus\",\"authors\":\"Hideaki Inagawa ,&nbsp;Chie Watanabe ,&nbsp;Jun Zhou ,&nbsp;Yasutaka Sugamori ,&nbsp;Noriyuki Wakabayashi ,&nbsp;Kazuhiro Aoki ,&nbsp;Yo Shibata\",\"doi\":\"10.1016/j.job.2025.100629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Diabetes mellitus (DM) is a health issue affecting millions of people worldwide. Prolonged hyperglycemia increases the risk of pathological fractures; however, verifying this risk through bone analysis is challenging because of the heterogeneity of bone.</div></div><div><h3>Methods</h3><div>The systemic effects of type 2 DM (T2DM) on calcified tissues were investigated by examining dentin in mice, focusing on the underlying cellular and molecular mechanisms. Mouse incisor dentin was selected because of its continuous growth, similar to the annual rings of wood, offering a unique opportunity to study the time-dependent deterioration of calcified tissue affected by T2DM. RNA sequencing of pulp-derived cells was used to identify transcriptomic alterations in a db/db mouse model (BKS.cg-Lepr[db]/Lepr[<em>db</em>]Jc). Structural and mechanical changes in dentin were evaluated using Raman spectroscopy and nanoindentation.</div></div><div><h3>Results</h3><div>There was an increase in dentin volume in diabetic mice, accompanied by a deterioration in mechanical properties, particularly in primary dentin. This mechanical deterioration is likely to be associated with an inflammation-driven formation of abnormal dentin matrix caused by long-term hyperglycemia. No significant differences were observed in cross-linked collagen structures or advanced glycation end products.</div></div><div><h3>Conclusions</h3><div>The findings demonstrated that gene expression in T2DM affects dentin and bone, contributing to micro-structural fragility through protein production. The incisor model used in this study proved to be a versatile tool for assessing other diseases that affect the integrity of calcified tissues over time.</div></div>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\"67 1\",\"pages\":\"Article 100629\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1349007925000180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007925000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的糖尿病(DM)是影响全球数百万人的健康问题。长期高血糖增加病理性骨折的风险;然而,由于骨骼的异质性,通过骨骼分析来验证这种风险是具有挑战性的。方法通过观察小鼠牙本质,探讨2型糖尿病(T2DM)对钙化组织的全身影响,探讨其细胞和分子机制。选择小鼠门牙本质是因为其持续生长,类似于木材的年轮,为研究T2DM影响的钙化组织的时间依赖性恶化提供了独特的机会。利用纸浆源性细胞的RNA测序来鉴定db/db小鼠模型(BKS.cg-Lepr[db]/Lepr[db]Jc)的转录组变化。利用拉曼光谱和纳米压痕技术评价牙本质的结构和力学变化。结果糖尿病小鼠牙本质体积增加,力学性能下降,尤其是初级牙本质力学性能下降。这种机械恶化可能与长期高血糖引起的炎症驱动的异常牙本质基质的形成有关。在交联胶原结构或晚期糖基化终产物中未观察到显著差异。结论2型糖尿病患者的基因表达影响牙本质和骨,通过蛋白产生导致微结构脆弱。本研究中使用的门牙模型被证明是评估其他疾病随时间影响钙化组织完整性的通用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The genetic basis of micro-structural fragility in murine dentin: Insights from type 2 diabetes mellitus

The genetic basis of micro-structural fragility in murine dentin: Insights from type 2 diabetes mellitus

Objectives

Diabetes mellitus (DM) is a health issue affecting millions of people worldwide. Prolonged hyperglycemia increases the risk of pathological fractures; however, verifying this risk through bone analysis is challenging because of the heterogeneity of bone.

Methods

The systemic effects of type 2 DM (T2DM) on calcified tissues were investigated by examining dentin in mice, focusing on the underlying cellular and molecular mechanisms. Mouse incisor dentin was selected because of its continuous growth, similar to the annual rings of wood, offering a unique opportunity to study the time-dependent deterioration of calcified tissue affected by T2DM. RNA sequencing of pulp-derived cells was used to identify transcriptomic alterations in a db/db mouse model (BKS.cg-Lepr[db]/Lepr[db]Jc). Structural and mechanical changes in dentin were evaluated using Raman spectroscopy and nanoindentation.

Results

There was an increase in dentin volume in diabetic mice, accompanied by a deterioration in mechanical properties, particularly in primary dentin. This mechanical deterioration is likely to be associated with an inflammation-driven formation of abnormal dentin matrix caused by long-term hyperglycemia. No significant differences were observed in cross-linked collagen structures or advanced glycation end products.

Conclusions

The findings demonstrated that gene expression in T2DM affects dentin and bone, contributing to micro-structural fragility through protein production. The incisor model used in this study proved to be a versatile tool for assessing other diseases that affect the integrity of calcified tissues over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Oral Biosciences
Journal of Oral Biosciences DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
4.40
自引率
12.50%
发文量
57
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信