{"title":"选择性BRD4抑制剂治疗常染色体显性多囊肾病的设计","authors":"Yueyue Yang, Hongli Liu, Haoxing Yuan, Kaikai Lyu, Haiyang Zhong, Yanlian Li, Danyan Cao, Wenchao Zhao, Haoran Zhang, Bing Xiong, Danqi Chen, Dong Guo","doi":"10.1021/acs.jmedchem.4c02128","DOIUrl":null,"url":null,"abstract":"Epigenetic modulation plays a pivotal role in restraining tumor progression by governing gene expression and protein function. Autosomal dominant polycystic kidney disease (ADPKD), characterized by neoplastic-like progression, can be managed by inhibiting cyst expansion. Of note, the epigenetic regulator BRD4 has been implicated in ADPKD’s development. Our prior research unveiled a class of (pyrazol-3-yl) pyrimidin-4-amine compounds as potent BRD4 inhibitors with additional kinase inhibition, which might induce unwanted biological activities. To address this, this study focused on creating selective BRD4 inhibitors through structure-guided design, minimizing off-target kinase interactions. Specifically, compound <b>23</b> emerged as an efficacious and selective BRD4 inhibitor in cellular and embryonic kidney models of ADPKD, along with encouraging outcomes in murine models. Collectively, these results highlight the therapeutic potential of targeted BRD4 inhibition as a safe and efficacious strategy for managing ADPKD.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"16 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Selective BRD4 Inhibitors for the Treatment of Autosomal Dominant Polycystic Kidney Disease\",\"authors\":\"Yueyue Yang, Hongli Liu, Haoxing Yuan, Kaikai Lyu, Haiyang Zhong, Yanlian Li, Danyan Cao, Wenchao Zhao, Haoran Zhang, Bing Xiong, Danqi Chen, Dong Guo\",\"doi\":\"10.1021/acs.jmedchem.4c02128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epigenetic modulation plays a pivotal role in restraining tumor progression by governing gene expression and protein function. Autosomal dominant polycystic kidney disease (ADPKD), characterized by neoplastic-like progression, can be managed by inhibiting cyst expansion. Of note, the epigenetic regulator BRD4 has been implicated in ADPKD’s development. Our prior research unveiled a class of (pyrazol-3-yl) pyrimidin-4-amine compounds as potent BRD4 inhibitors with additional kinase inhibition, which might induce unwanted biological activities. To address this, this study focused on creating selective BRD4 inhibitors through structure-guided design, minimizing off-target kinase interactions. Specifically, compound <b>23</b> emerged as an efficacious and selective BRD4 inhibitor in cellular and embryonic kidney models of ADPKD, along with encouraging outcomes in murine models. Collectively, these results highlight the therapeutic potential of targeted BRD4 inhibition as a safe and efficacious strategy for managing ADPKD.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c02128\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02128","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design of Selective BRD4 Inhibitors for the Treatment of Autosomal Dominant Polycystic Kidney Disease
Epigenetic modulation plays a pivotal role in restraining tumor progression by governing gene expression and protein function. Autosomal dominant polycystic kidney disease (ADPKD), characterized by neoplastic-like progression, can be managed by inhibiting cyst expansion. Of note, the epigenetic regulator BRD4 has been implicated in ADPKD’s development. Our prior research unveiled a class of (pyrazol-3-yl) pyrimidin-4-amine compounds as potent BRD4 inhibitors with additional kinase inhibition, which might induce unwanted biological activities. To address this, this study focused on creating selective BRD4 inhibitors through structure-guided design, minimizing off-target kinase interactions. Specifically, compound 23 emerged as an efficacious and selective BRD4 inhibitor in cellular and embryonic kidney models of ADPKD, along with encouraging outcomes in murine models. Collectively, these results highlight the therapeutic potential of targeted BRD4 inhibition as a safe and efficacious strategy for managing ADPKD.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.