Xuejie Zhu, Yixuan Li, Qiao-Zhi Li, Nan Wang, Shaoan Yang, Xingfa Gao, Lu Zhang, Peijun Wang, Zihui Liang, Jiaxi Li, Kai Wang, Shengzhong (Frank) Liu, Dong Yang
{"title":"使用双面连接剂的柔性钙钛矿光伏中的限制性异质界面分层","authors":"Xuejie Zhu, Yixuan Li, Qiao-Zhi Li, Nan Wang, Shaoan Yang, Xingfa Gao, Lu Zhang, Peijun Wang, Zihui Liang, Jiaxi Li, Kai Wang, Shengzhong (Frank) Liu, Dong Yang","doi":"10.1002/adma.202419329","DOIUrl":null,"url":null,"abstract":"<p>Flexible perovskite solar cells offer significant potential for portable electronics due to their exceptional power density. However, the commercialization of these devices is hampered by challenges related to mechanical flexibility, primarily due to inadequate adhesion between the perovskite absorber layer and the flexible substrate. Herein, this delamination issue is addressed by employing a bifacial linker, potassium benzyl(trifluoro)borate (BnBF<sub>3</sub>K), to enhance adhesion at the SnO<sub>2</sub>/perovskite interface. This approach not only improves the mechanical stability of flexible perovskite devices but also reduces buried surface defects and optimizes energy level alignment. Consequently, a record efficiency of 21.82% (certified at 21.39%) is achieved for a flexible perovskite solar module with an area of 12.80 cm<sup>2</sup> and a high efficiency of 24.15% for a flexible perovskite solar cell. Furthermore, the flexible modules exhibit outstanding mechanical flexibility, retaining 96.56% of their initial efficiency after 6000 bending cycles, demonstrating their suitability for various practical applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 13","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restrictive Heterointerfacial Delamination in Flexible Perovskite Photovoltaics Using a Bifacial Linker\",\"authors\":\"Xuejie Zhu, Yixuan Li, Qiao-Zhi Li, Nan Wang, Shaoan Yang, Xingfa Gao, Lu Zhang, Peijun Wang, Zihui Liang, Jiaxi Li, Kai Wang, Shengzhong (Frank) Liu, Dong Yang\",\"doi\":\"10.1002/adma.202419329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible perovskite solar cells offer significant potential for portable electronics due to their exceptional power density. However, the commercialization of these devices is hampered by challenges related to mechanical flexibility, primarily due to inadequate adhesion between the perovskite absorber layer and the flexible substrate. Herein, this delamination issue is addressed by employing a bifacial linker, potassium benzyl(trifluoro)borate (BnBF<sub>3</sub>K), to enhance adhesion at the SnO<sub>2</sub>/perovskite interface. This approach not only improves the mechanical stability of flexible perovskite devices but also reduces buried surface defects and optimizes energy level alignment. Consequently, a record efficiency of 21.82% (certified at 21.39%) is achieved for a flexible perovskite solar module with an area of 12.80 cm<sup>2</sup> and a high efficiency of 24.15% for a flexible perovskite solar cell. Furthermore, the flexible modules exhibit outstanding mechanical flexibility, retaining 96.56% of their initial efficiency after 6000 bending cycles, demonstrating their suitability for various practical applications.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 13\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202419329\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202419329","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Restrictive Heterointerfacial Delamination in Flexible Perovskite Photovoltaics Using a Bifacial Linker
Flexible perovskite solar cells offer significant potential for portable electronics due to their exceptional power density. However, the commercialization of these devices is hampered by challenges related to mechanical flexibility, primarily due to inadequate adhesion between the perovskite absorber layer and the flexible substrate. Herein, this delamination issue is addressed by employing a bifacial linker, potassium benzyl(trifluoro)borate (BnBF3K), to enhance adhesion at the SnO2/perovskite interface. This approach not only improves the mechanical stability of flexible perovskite devices but also reduces buried surface defects and optimizes energy level alignment. Consequently, a record efficiency of 21.82% (certified at 21.39%) is achieved for a flexible perovskite solar module with an area of 12.80 cm2 and a high efficiency of 24.15% for a flexible perovskite solar cell. Furthermore, the flexible modules exhibit outstanding mechanical flexibility, retaining 96.56% of their initial efficiency after 6000 bending cycles, demonstrating their suitability for various practical applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.