磷灰石作为锡矿化的探路者:前景与警告

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Martin F. Mangler, Nicholas J. Gardiner, Dominic Skeat, Nick M. W. Roberts, Simon Tapster
{"title":"磷灰石作为锡矿化的探路者:前景与警告","authors":"Martin F. Mangler, Nicholas J. Gardiner, Dominic Skeat, Nick M. W. Roberts, Simon Tapster","doi":"10.1007/s00126-025-01350-2","DOIUrl":null,"url":null,"abstract":"<p>Granite-related mineral deposits are major primary sources of the critical metals tin (Sn) and lithium (Li). The utility of accessory minerals such as zircon and apatite as pathfinders to these ore deposits has been a subject of great interest in recent years, with a number of geochemical discriminants having been developed to distinguish barren from metal-fertile and mineralised intrusions. Here, we study the potential of apatite as an indicator mineral for tin and lithium mineralisation using a compilation of published apatite trace element data as well as new data for the mineralised Cornubian batholith and barren Bhutanese leucogranites. Critical examination of common geochemical discriminants tracing magma fractionation and redox conditions (Mn, Eu/Eu*, La/Yb<sub>N</sub> and Sr/Y) reveals large and overlapping data scatter for both barren and Sn-fertile intrusions. This calls into question the utility of these petrogenetic indicators to pinpoint tin metallogeny. Instead, <i>prima facie</i> metal concentrations directly related to tin mineralisation (i.e., Sn and Li) are consistently elevated in apatite from fertile and mineralised intrusions. Based on our data compilation, Li and Sn concentrations in apatite are the most robust indicators for Sn (and Li) mineralisation, and we encourage the community to include Li and Sn in their analytical routines to further test these observations and explore their implications for tin metallogeny.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"78 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apatite as a pathfinder to tin mineralisation: prospects and caveats\",\"authors\":\"Martin F. Mangler, Nicholas J. Gardiner, Dominic Skeat, Nick M. W. Roberts, Simon Tapster\",\"doi\":\"10.1007/s00126-025-01350-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Granite-related mineral deposits are major primary sources of the critical metals tin (Sn) and lithium (Li). The utility of accessory minerals such as zircon and apatite as pathfinders to these ore deposits has been a subject of great interest in recent years, with a number of geochemical discriminants having been developed to distinguish barren from metal-fertile and mineralised intrusions. Here, we study the potential of apatite as an indicator mineral for tin and lithium mineralisation using a compilation of published apatite trace element data as well as new data for the mineralised Cornubian batholith and barren Bhutanese leucogranites. Critical examination of common geochemical discriminants tracing magma fractionation and redox conditions (Mn, Eu/Eu*, La/Yb<sub>N</sub> and Sr/Y) reveals large and overlapping data scatter for both barren and Sn-fertile intrusions. This calls into question the utility of these petrogenetic indicators to pinpoint tin metallogeny. Instead, <i>prima facie</i> metal concentrations directly related to tin mineralisation (i.e., Sn and Li) are consistently elevated in apatite from fertile and mineralised intrusions. Based on our data compilation, Li and Sn concentrations in apatite are the most robust indicators for Sn (and Li) mineralisation, and we encourage the community to include Li and Sn in their analytical routines to further test these observations and explore their implications for tin metallogeny.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-025-01350-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-025-01350-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

花岗岩相关矿床是关键金属锡(Sn)和锂(Li)的主要来源。近年来,利用锆石和磷灰石等辅助矿物作为这些矿床的探路者一直是人们非常感兴趣的课题,已经开发了许多地球化学判别法来区分贫瘠、金属肥沃和矿化侵入体。在这里,我们研究了磷灰石作为锡和锂矿化指示矿物的潜力,使用了已发表的磷灰石微量元素数据汇编,以及矿化的Cornubian岩基和贫瘠的不丹浅花岗岩的新数据。对追踪岩浆分选和氧化还原条件(Mn、Eu/Eu*、La/YbN和Sr/Y)的常见地球化学判据进行了严格检查,发现贫锡侵入体的数据分散程度大且重叠。这就对这些岩石成因指标在确定锡成矿作用方面的效用提出了质疑。相反,与锡矿化直接相关的主要相金属浓度(即锡和锂)在来自肥沃和矿化侵入体的磷灰石中持续升高。根据我们的数据汇编,磷灰石中的Li和Sn浓度是锡(和Li)矿化的最可靠指标,我们鼓励社区将Li和Sn纳入他们的分析程序,以进一步测试这些观察结果并探索其对锡成矿作用的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apatite as a pathfinder to tin mineralisation: prospects and caveats

Granite-related mineral deposits are major primary sources of the critical metals tin (Sn) and lithium (Li). The utility of accessory minerals such as zircon and apatite as pathfinders to these ore deposits has been a subject of great interest in recent years, with a number of geochemical discriminants having been developed to distinguish barren from metal-fertile and mineralised intrusions. Here, we study the potential of apatite as an indicator mineral for tin and lithium mineralisation using a compilation of published apatite trace element data as well as new data for the mineralised Cornubian batholith and barren Bhutanese leucogranites. Critical examination of common geochemical discriminants tracing magma fractionation and redox conditions (Mn, Eu/Eu*, La/YbN and Sr/Y) reveals large and overlapping data scatter for both barren and Sn-fertile intrusions. This calls into question the utility of these petrogenetic indicators to pinpoint tin metallogeny. Instead, prima facie metal concentrations directly related to tin mineralisation (i.e., Sn and Li) are consistently elevated in apatite from fertile and mineralised intrusions. Based on our data compilation, Li and Sn concentrations in apatite are the most robust indicators for Sn (and Li) mineralisation, and we encourage the community to include Li and Sn in their analytical routines to further test these observations and explore their implications for tin metallogeny.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信