{"title":"带电底物处理增强T细胞介导的癌症免疫治疗","authors":"Jia Song, Yanhui Lu, Lulu Liu, Xiaoyu Han, Yanhong Meng, Boon Chin Heng, Xin Zhang, Qun Cui, Ziqi Liu, Yusi Guo, Xiaona Zheng, Fuping You, Dan Lu, Xuehui Zhang, Xuliang Deng","doi":"10.1038/s41467-025-56858-y","DOIUrl":null,"url":null,"abstract":"<p>Biophysical cues play a crucial role in T cell biology, yet their implications in adoptive T cell therapy (ACT) remain largely unknown. Here, we investigate the effect of electrical stimuli on CD8<sup>+</sup> T cells using a charged substrate composed of electroactive nanocomposites with tunable surface charge intensities. Electrical stimuli enhance the persistence and tumor-suppressive efficacy of transferred T cells, with effects dependent on substrate charge. Single-cell RNA-sequencing analysis unveils a decrease in virtual memory T (Tvm) cells and an increase in proliferative potential T (Tpp) cells, which exhibit superior antitumor activity and metabolic adaptations relative to those treated with uncharged substrate. ATAC-seq profiling demonstrates heightened accessibility at upstream binding sites for EGR1, a transcription factor critical for Tpp cell differentiation. Mechanistically, the charged substrate disrupts ionic TCR-lipid interactions, amplifies TCR signaling, and activates EGR1, thereby impeding Tvm polarization during ex vivo culture. Our findings thus highlight the importance of extracellular electrical stimuli in shaping T cell fate, offering potential for optimizing ACT for therapeutic applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charged substrate treatment enhances T cell mediated cancer immunotherapy\",\"authors\":\"Jia Song, Yanhui Lu, Lulu Liu, Xiaoyu Han, Yanhong Meng, Boon Chin Heng, Xin Zhang, Qun Cui, Ziqi Liu, Yusi Guo, Xiaona Zheng, Fuping You, Dan Lu, Xuehui Zhang, Xuliang Deng\",\"doi\":\"10.1038/s41467-025-56858-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biophysical cues play a crucial role in T cell biology, yet their implications in adoptive T cell therapy (ACT) remain largely unknown. Here, we investigate the effect of electrical stimuli on CD8<sup>+</sup> T cells using a charged substrate composed of electroactive nanocomposites with tunable surface charge intensities. Electrical stimuli enhance the persistence and tumor-suppressive efficacy of transferred T cells, with effects dependent on substrate charge. Single-cell RNA-sequencing analysis unveils a decrease in virtual memory T (Tvm) cells and an increase in proliferative potential T (Tpp) cells, which exhibit superior antitumor activity and metabolic adaptations relative to those treated with uncharged substrate. ATAC-seq profiling demonstrates heightened accessibility at upstream binding sites for EGR1, a transcription factor critical for Tpp cell differentiation. Mechanistically, the charged substrate disrupts ionic TCR-lipid interactions, amplifies TCR signaling, and activates EGR1, thereby impeding Tvm polarization during ex vivo culture. Our findings thus highlight the importance of extracellular electrical stimuli in shaping T cell fate, offering potential for optimizing ACT for therapeutic applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56858-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56858-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Charged substrate treatment enhances T cell mediated cancer immunotherapy
Biophysical cues play a crucial role in T cell biology, yet their implications in adoptive T cell therapy (ACT) remain largely unknown. Here, we investigate the effect of electrical stimuli on CD8+ T cells using a charged substrate composed of electroactive nanocomposites with tunable surface charge intensities. Electrical stimuli enhance the persistence and tumor-suppressive efficacy of transferred T cells, with effects dependent on substrate charge. Single-cell RNA-sequencing analysis unveils a decrease in virtual memory T (Tvm) cells and an increase in proliferative potential T (Tpp) cells, which exhibit superior antitumor activity and metabolic adaptations relative to those treated with uncharged substrate. ATAC-seq profiling demonstrates heightened accessibility at upstream binding sites for EGR1, a transcription factor critical for Tpp cell differentiation. Mechanistically, the charged substrate disrupts ionic TCR-lipid interactions, amplifies TCR signaling, and activates EGR1, thereby impeding Tvm polarization during ex vivo culture. Our findings thus highlight the importance of extracellular electrical stimuli in shaping T cell fate, offering potential for optimizing ACT for therapeutic applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.