带电底物处理增强T细胞介导的癌症免疫治疗

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jia Song, Yanhui Lu, Lulu Liu, Xiaoyu Han, Yanhong Meng, Boon Chin Heng, Xin Zhang, Qun Cui, Ziqi Liu, Yusi Guo, Xiaona Zheng, Fuping You, Dan Lu, Xuehui Zhang, Xuliang Deng
{"title":"带电底物处理增强T细胞介导的癌症免疫治疗","authors":"Jia Song, Yanhui Lu, Lulu Liu, Xiaoyu Han, Yanhong Meng, Boon Chin Heng, Xin Zhang, Qun Cui, Ziqi Liu, Yusi Guo, Xiaona Zheng, Fuping You, Dan Lu, Xuehui Zhang, Xuliang Deng","doi":"10.1038/s41467-025-56858-y","DOIUrl":null,"url":null,"abstract":"<p>Biophysical cues play a crucial role in T cell biology, yet their implications in adoptive T cell therapy (ACT) remain largely unknown. Here, we investigate the effect of electrical stimuli on CD8<sup>+</sup> T cells using a charged substrate composed of electroactive nanocomposites with tunable surface charge intensities. Electrical stimuli enhance the persistence and tumor-suppressive efficacy of transferred T cells, with effects dependent on substrate charge. Single-cell RNA-sequencing analysis unveils a decrease in virtual memory T (Tvm) cells and an increase in proliferative potential T (Tpp) cells, which exhibit superior antitumor activity and metabolic adaptations relative to those treated with uncharged substrate. ATAC-seq profiling demonstrates heightened accessibility at upstream binding sites for EGR1, a transcription factor critical for Tpp cell differentiation. Mechanistically, the charged substrate disrupts ionic TCR-lipid interactions, amplifies TCR signaling, and activates EGR1, thereby impeding Tvm polarization during ex vivo culture. Our findings thus highlight the importance of extracellular electrical stimuli in shaping T cell fate, offering potential for optimizing ACT for therapeutic applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charged substrate treatment enhances T cell mediated cancer immunotherapy\",\"authors\":\"Jia Song, Yanhui Lu, Lulu Liu, Xiaoyu Han, Yanhong Meng, Boon Chin Heng, Xin Zhang, Qun Cui, Ziqi Liu, Yusi Guo, Xiaona Zheng, Fuping You, Dan Lu, Xuehui Zhang, Xuliang Deng\",\"doi\":\"10.1038/s41467-025-56858-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biophysical cues play a crucial role in T cell biology, yet their implications in adoptive T cell therapy (ACT) remain largely unknown. Here, we investigate the effect of electrical stimuli on CD8<sup>+</sup> T cells using a charged substrate composed of electroactive nanocomposites with tunable surface charge intensities. Electrical stimuli enhance the persistence and tumor-suppressive efficacy of transferred T cells, with effects dependent on substrate charge. Single-cell RNA-sequencing analysis unveils a decrease in virtual memory T (Tvm) cells and an increase in proliferative potential T (Tpp) cells, which exhibit superior antitumor activity and metabolic adaptations relative to those treated with uncharged substrate. ATAC-seq profiling demonstrates heightened accessibility at upstream binding sites for EGR1, a transcription factor critical for Tpp cell differentiation. Mechanistically, the charged substrate disrupts ionic TCR-lipid interactions, amplifies TCR signaling, and activates EGR1, thereby impeding Tvm polarization during ex vivo culture. Our findings thus highlight the importance of extracellular electrical stimuli in shaping T cell fate, offering potential for optimizing ACT for therapeutic applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56858-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56858-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物物理线索在T细胞生物学中起着至关重要的作用,但它们在过继性T细胞治疗(ACT)中的意义在很大程度上仍然未知。在这里,我们研究电刺激对CD8+ T细胞的影响,使用由表面电荷强度可调的电活性纳米复合材料组成的带电衬底。电刺激增强转移的T细胞的持久性和肿瘤抑制效果,其影响取决于底物电荷。单细胞rna测序分析揭示了虚拟记忆T (Tvm)细胞的减少和增殖潜力T (Tpp)细胞的增加,与未带电底物处理的细胞相比,它们表现出更强的抗肿瘤活性和代谢适应性。ATAC-seq分析显示EGR1上游结合位点的可及性提高,EGR1是Tpp细胞分化的关键转录因子。从机制上讲,带电底物破坏离子TCR-脂质相互作用,放大TCR信号,激活EGR1,从而在体外培养过程中阻碍Tvm极化。因此,我们的发现强调了细胞外电刺激在塑造T细胞命运中的重要性,为优化ACT的治疗应用提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Charged substrate treatment enhances T cell mediated cancer immunotherapy

Charged substrate treatment enhances T cell mediated cancer immunotherapy

Biophysical cues play a crucial role in T cell biology, yet their implications in adoptive T cell therapy (ACT) remain largely unknown. Here, we investigate the effect of electrical stimuli on CD8+ T cells using a charged substrate composed of electroactive nanocomposites with tunable surface charge intensities. Electrical stimuli enhance the persistence and tumor-suppressive efficacy of transferred T cells, with effects dependent on substrate charge. Single-cell RNA-sequencing analysis unveils a decrease in virtual memory T (Tvm) cells and an increase in proliferative potential T (Tpp) cells, which exhibit superior antitumor activity and metabolic adaptations relative to those treated with uncharged substrate. ATAC-seq profiling demonstrates heightened accessibility at upstream binding sites for EGR1, a transcription factor critical for Tpp cell differentiation. Mechanistically, the charged substrate disrupts ionic TCR-lipid interactions, amplifies TCR signaling, and activates EGR1, thereby impeding Tvm polarization during ex vivo culture. Our findings thus highlight the importance of extracellular electrical stimuli in shaping T cell fate, offering potential for optimizing ACT for therapeutic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信