合理设计罗丹明荧光探针,实现非生物胁迫下植物中水杨酸的选择性检测和生物成像

IF 10.5 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jinjing Wang, Xiaoyan Yang, Lijun Fan, Haojie Ye, Gefei Hao, Peiyi Wang
{"title":"合理设计罗丹明荧光探针,实现非生物胁迫下植物中水杨酸的选择性检测和生物成像","authors":"Jinjing Wang,&nbsp;Xiaoyan Yang,&nbsp;Lijun Fan,&nbsp;Haojie Ye,&nbsp;Gefei Hao,&nbsp;Peiyi Wang","doi":"10.1111/pbi.70003","DOIUrl":null,"url":null,"abstract":"<p>Abiotic stress severely hinders plant growth and development, resulting in a considerable reduction in crop yields. Salicylic acid (SA) serves as a central signal mediating abiotic stress responses in plants. Real-time fluorescence tracking using specific probes can enhance our understanding of the SA-triggered modulation underlying these events. However, in complicated living plant microenvironments, selective recognition and bioimaging of SA is a great challenge for scientists due to the severe background interference and SA analogues. Herein, an efficient fluorescence probing technology employing a highly selective rhodamine probe—phoxrodam was developed, which realizes the precise bioimaging of SA in salt-stressed plant seedlings. Experimental findings reveal that phoxrodam demonstrates exceptional selectivity (fluorescence intensity: <i>I</i><sub>Phoxrodam+SA</sub>/<i>I</i><sub>Phoxrodam+SA analogues</sub> &gt; 4.29-fold), high sensitivity (limit of detection = 6.42 nM, fluorescence quantum yield: Φ<sub>Phoxrodam+SA</sub> = 0.36) and good anti-interference properties. Furthermore, we confirmed that phoxrodam accurately detects SA in the roots of salt-stressed wheat seedlings, the low-temperature resistance of <i>Nicotiana benthamiana</i> and the heavy metal resistance of pea seeds, using <i>in vivo</i> confocal imaging. This study provides a feasible strategy for efficiently tracking plant signalling molecules and promotes the in-depth research of SA-mediated physiological mechanisms, laying a key foundation for the future development of new immune activation inducers.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"23 5","pages":"1736-1750"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.70003","citationCount":"0","resultStr":"{\"title\":\"The rational design of a Rhodamine fluorescent probe enables the selective detection and bioimaging of salicylic acid in plants under abiotic stress\",\"authors\":\"Jinjing Wang,&nbsp;Xiaoyan Yang,&nbsp;Lijun Fan,&nbsp;Haojie Ye,&nbsp;Gefei Hao,&nbsp;Peiyi Wang\",\"doi\":\"10.1111/pbi.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abiotic stress severely hinders plant growth and development, resulting in a considerable reduction in crop yields. Salicylic acid (SA) serves as a central signal mediating abiotic stress responses in plants. Real-time fluorescence tracking using specific probes can enhance our understanding of the SA-triggered modulation underlying these events. However, in complicated living plant microenvironments, selective recognition and bioimaging of SA is a great challenge for scientists due to the severe background interference and SA analogues. Herein, an efficient fluorescence probing technology employing a highly selective rhodamine probe—phoxrodam was developed, which realizes the precise bioimaging of SA in salt-stressed plant seedlings. Experimental findings reveal that phoxrodam demonstrates exceptional selectivity (fluorescence intensity: <i>I</i><sub>Phoxrodam+SA</sub>/<i>I</i><sub>Phoxrodam+SA analogues</sub> &gt; 4.29-fold), high sensitivity (limit of detection = 6.42 nM, fluorescence quantum yield: Φ<sub>Phoxrodam+SA</sub> = 0.36) and good anti-interference properties. Furthermore, we confirmed that phoxrodam accurately detects SA in the roots of salt-stressed wheat seedlings, the low-temperature resistance of <i>Nicotiana benthamiana</i> and the heavy metal resistance of pea seeds, using <i>in vivo</i> confocal imaging. This study provides a feasible strategy for efficiently tracking plant signalling molecules and promotes the in-depth research of SA-mediated physiological mechanisms, laying a key foundation for the future development of new immune activation inducers.</p>\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\"23 5\",\"pages\":\"1736-1750\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pbi.70003\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pbi.70003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非生物胁迫严重阻碍植物生长发育,导致作物产量大幅下降。水杨酸(Salicylic acid, SA)是介导植物非生物胁迫反应的中心信号。使用特定探针的实时荧光跟踪可以增强我们对SA触发的这些事件背后的调制的理解。然而,在复杂的植物微环境中,由于存在严重的背景干扰和SA类似物,SA的选择性识别和生物成像对科学家来说是一个巨大的挑战。本研究开发了一种采用高选择性罗丹明探针的高效荧光探测技术,实现了盐胁迫植物幼苗中SA的精确生物成像。实验结果表明,phoxrodam具有优异的选择性(荧光强度:IPhoxrodam+SA/IPhoxrodam+SA类似物>;4.29倍),灵敏度高(检出限= 6.42 nM,荧光量子产率:ΦPhoxrodam+SA = 0.36),抗干扰性好。此外,我们还证实,phoxrodam能够利用体内共聚焦成像技术准确检测盐胁迫下小麦幼苗根系中的SA、本氏烟(Nicotiana benthamiana)的低温抗性以及豌豆种子的重金属抗性。本研究为高效跟踪植物信号分子提供了可行的策略,促进了SA介导的生理机制的深入研究,为未来开发新的免疫激活诱导剂奠定了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The rational design of a Rhodamine fluorescent probe enables the selective detection and bioimaging of salicylic acid in plants under abiotic stress

The rational design of a Rhodamine fluorescent probe enables the selective detection and bioimaging of salicylic acid in plants under abiotic stress

The rational design of a Rhodamine fluorescent probe enables the selective detection and bioimaging of salicylic acid in plants under abiotic stress

Abiotic stress severely hinders plant growth and development, resulting in a considerable reduction in crop yields. Salicylic acid (SA) serves as a central signal mediating abiotic stress responses in plants. Real-time fluorescence tracking using specific probes can enhance our understanding of the SA-triggered modulation underlying these events. However, in complicated living plant microenvironments, selective recognition and bioimaging of SA is a great challenge for scientists due to the severe background interference and SA analogues. Herein, an efficient fluorescence probing technology employing a highly selective rhodamine probe—phoxrodam was developed, which realizes the precise bioimaging of SA in salt-stressed plant seedlings. Experimental findings reveal that phoxrodam demonstrates exceptional selectivity (fluorescence intensity: IPhoxrodam+SA/IPhoxrodam+SA analogues > 4.29-fold), high sensitivity (limit of detection = 6.42 nM, fluorescence quantum yield: ΦPhoxrodam+SA = 0.36) and good anti-interference properties. Furthermore, we confirmed that phoxrodam accurately detects SA in the roots of salt-stressed wheat seedlings, the low-temperature resistance of Nicotiana benthamiana and the heavy metal resistance of pea seeds, using in vivo confocal imaging. This study provides a feasible strategy for efficiently tracking plant signalling molecules and promotes the in-depth research of SA-mediated physiological mechanisms, laying a key foundation for the future development of new immune activation inducers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信