基于Zr0.75Hf0.25O2/Al2O3复合势垒的铁电隧道结

IF 3.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Yating Cao, Jingchao Xiao, Haoxin Qiao, Wei Zhang, Yubao Li
{"title":"基于Zr0.75Hf0.25O2/Al2O3复合势垒的铁电隧道结","authors":"Yating Cao, Jingchao Xiao, Haoxin Qiao, Wei Zhang, Yubao Li","doi":"10.1063/5.0250527","DOIUrl":null,"url":null,"abstract":"Ferroelectric tunnel junction (FTJ) with tunable tunnel electroresistance is promising for emerging nonvolatile memory applications. In this work, 6 nm-thick Hf-doped ZrO2 ferroelectrics with Zr : Hf = 3 : 1 (ZHO), exhibiting a high remanent polarization of 30 μC/cm2, was prepared and further used to build Pt/ZHO/Al2O3/W FTJ devices with adding 1 nm-thick Al2O3 dielectric layer to reduce the leakage. The FTJ delivered superior performance with a tunneling electroresistance ratio of over 7000, outperforming previously reported other FTJ devices based on hafnia/zirconia ferroelectrics. Under 100 ns single-pulse writing, the FTJ exhibited multiple stable states, good retention over 104 s, and switching endurance exceeding 5 × 104 cycles. Additionally, it delivered a relatively high read current density of 8 A/cm2 at 0.2 V. The results demonstrate that the ZHO/Al2O3 composite structure can effectively alter the tunneling barrier height and increase tunneling current, resulting in a large ON/OFF ratio. The results underscore a great potential of ZHO ferroelectrics in the future development of high-performance nonvolatile memory technologies.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"12 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric tunnel junction based on Zr0.75Hf0.25O2/Al2O3 composite barrier\",\"authors\":\"Yating Cao, Jingchao Xiao, Haoxin Qiao, Wei Zhang, Yubao Li\",\"doi\":\"10.1063/5.0250527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroelectric tunnel junction (FTJ) with tunable tunnel electroresistance is promising for emerging nonvolatile memory applications. In this work, 6 nm-thick Hf-doped ZrO2 ferroelectrics with Zr : Hf = 3 : 1 (ZHO), exhibiting a high remanent polarization of 30 μC/cm2, was prepared and further used to build Pt/ZHO/Al2O3/W FTJ devices with adding 1 nm-thick Al2O3 dielectric layer to reduce the leakage. The FTJ delivered superior performance with a tunneling electroresistance ratio of over 7000, outperforming previously reported other FTJ devices based on hafnia/zirconia ferroelectrics. Under 100 ns single-pulse writing, the FTJ exhibited multiple stable states, good retention over 104 s, and switching endurance exceeding 5 × 104 cycles. Additionally, it delivered a relatively high read current density of 8 A/cm2 at 0.2 V. The results demonstrate that the ZHO/Al2O3 composite structure can effectively alter the tunneling barrier height and increase tunneling current, resulting in a large ON/OFF ratio. The results underscore a great potential of ZHO ferroelectrics in the future development of high-performance nonvolatile memory technologies.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0250527\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250527","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有可调谐隧道电阻的铁电隧道结(FTJ)在新兴的非易失性存储器应用中很有前景。本文制备了Zr: Hf = 3:1 (ZHO)的6 nm厚Hf掺杂ZrO2铁电体,具有30 μC/cm2的高剩余极化,并通过添加1 nm厚Al2O3介电层来减少泄漏,进一步用于构建Pt/ZHO/Al2O3/W FTJ器件。FTJ提供了优越的性能,隧穿电阻比超过7000,优于先前报道的其他基于铪/氧化锆铁电体的FTJ器件。在100 ns单脉冲写入下,FTJ表现出多种稳定状态,保持时间超过104 s,开关持久时间超过5 × 104次。此外,它提供了相对较高的读电流密度,在0.2 V时为8 a /cm2。结果表明:zno /Al2O3复合结构能有效改变隧道势垒高度,增加隧道电流,获得较大的ON/OFF比;这些结果强调了ZHO铁电体在高性能非易失性存储技术的未来发展中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferroelectric tunnel junction based on Zr0.75Hf0.25O2/Al2O3 composite barrier
Ferroelectric tunnel junction (FTJ) with tunable tunnel electroresistance is promising for emerging nonvolatile memory applications. In this work, 6 nm-thick Hf-doped ZrO2 ferroelectrics with Zr : Hf = 3 : 1 (ZHO), exhibiting a high remanent polarization of 30 μC/cm2, was prepared and further used to build Pt/ZHO/Al2O3/W FTJ devices with adding 1 nm-thick Al2O3 dielectric layer to reduce the leakage. The FTJ delivered superior performance with a tunneling electroresistance ratio of over 7000, outperforming previously reported other FTJ devices based on hafnia/zirconia ferroelectrics. Under 100 ns single-pulse writing, the FTJ exhibited multiple stable states, good retention over 104 s, and switching endurance exceeding 5 × 104 cycles. Additionally, it delivered a relatively high read current density of 8 A/cm2 at 0.2 V. The results demonstrate that the ZHO/Al2O3 composite structure can effectively alter the tunneling barrier height and increase tunneling current, resulting in a large ON/OFF ratio. The results underscore a great potential of ZHO ferroelectrics in the future development of high-performance nonvolatile memory technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信