Yating Cao, Jingchao Xiao, Haoxin Qiao, Wei Zhang, Yubao Li
{"title":"基于Zr0.75Hf0.25O2/Al2O3复合势垒的铁电隧道结","authors":"Yating Cao, Jingchao Xiao, Haoxin Qiao, Wei Zhang, Yubao Li","doi":"10.1063/5.0250527","DOIUrl":null,"url":null,"abstract":"Ferroelectric tunnel junction (FTJ) with tunable tunnel electroresistance is promising for emerging nonvolatile memory applications. In this work, 6 nm-thick Hf-doped ZrO2 ferroelectrics with Zr : Hf = 3 : 1 (ZHO), exhibiting a high remanent polarization of 30 μC/cm2, was prepared and further used to build Pt/ZHO/Al2O3/W FTJ devices with adding 1 nm-thick Al2O3 dielectric layer to reduce the leakage. The FTJ delivered superior performance with a tunneling electroresistance ratio of over 7000, outperforming previously reported other FTJ devices based on hafnia/zirconia ferroelectrics. Under 100 ns single-pulse writing, the FTJ exhibited multiple stable states, good retention over 104 s, and switching endurance exceeding 5 × 104 cycles. Additionally, it delivered a relatively high read current density of 8 A/cm2 at 0.2 V. The results demonstrate that the ZHO/Al2O3 composite structure can effectively alter the tunneling barrier height and increase tunneling current, resulting in a large ON/OFF ratio. The results underscore a great potential of ZHO ferroelectrics in the future development of high-performance nonvolatile memory technologies.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"12 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric tunnel junction based on Zr0.75Hf0.25O2/Al2O3 composite barrier\",\"authors\":\"Yating Cao, Jingchao Xiao, Haoxin Qiao, Wei Zhang, Yubao Li\",\"doi\":\"10.1063/5.0250527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroelectric tunnel junction (FTJ) with tunable tunnel electroresistance is promising for emerging nonvolatile memory applications. In this work, 6 nm-thick Hf-doped ZrO2 ferroelectrics with Zr : Hf = 3 : 1 (ZHO), exhibiting a high remanent polarization of 30 μC/cm2, was prepared and further used to build Pt/ZHO/Al2O3/W FTJ devices with adding 1 nm-thick Al2O3 dielectric layer to reduce the leakage. The FTJ delivered superior performance with a tunneling electroresistance ratio of over 7000, outperforming previously reported other FTJ devices based on hafnia/zirconia ferroelectrics. Under 100 ns single-pulse writing, the FTJ exhibited multiple stable states, good retention over 104 s, and switching endurance exceeding 5 × 104 cycles. Additionally, it delivered a relatively high read current density of 8 A/cm2 at 0.2 V. The results demonstrate that the ZHO/Al2O3 composite structure can effectively alter the tunneling barrier height and increase tunneling current, resulting in a large ON/OFF ratio. The results underscore a great potential of ZHO ferroelectrics in the future development of high-performance nonvolatile memory technologies.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0250527\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250527","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Ferroelectric tunnel junction based on Zr0.75Hf0.25O2/Al2O3 composite barrier
Ferroelectric tunnel junction (FTJ) with tunable tunnel electroresistance is promising for emerging nonvolatile memory applications. In this work, 6 nm-thick Hf-doped ZrO2 ferroelectrics with Zr : Hf = 3 : 1 (ZHO), exhibiting a high remanent polarization of 30 μC/cm2, was prepared and further used to build Pt/ZHO/Al2O3/W FTJ devices with adding 1 nm-thick Al2O3 dielectric layer to reduce the leakage. The FTJ delivered superior performance with a tunneling electroresistance ratio of over 7000, outperforming previously reported other FTJ devices based on hafnia/zirconia ferroelectrics. Under 100 ns single-pulse writing, the FTJ exhibited multiple stable states, good retention over 104 s, and switching endurance exceeding 5 × 104 cycles. Additionally, it delivered a relatively high read current density of 8 A/cm2 at 0.2 V. The results demonstrate that the ZHO/Al2O3 composite structure can effectively alter the tunneling barrier height and increase tunneling current, resulting in a large ON/OFF ratio. The results underscore a great potential of ZHO ferroelectrics in the future development of high-performance nonvolatile memory technologies.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.