纳米级氧化通道铁电场效应晶体管中的离散铁电极化开关

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanjie Shao, Elham Rafie Borujeny, Jorge Navarro Fidalgo, John Chao-Chung Huang, Tyra E. Espedal, Dimitri A. Antoniadis, Jesús A. del Alamo
{"title":"纳米级氧化通道铁电场效应晶体管中的离散铁电极化开关","authors":"Yanjie Shao, Elham Rafie Borujeny, Jorge Navarro Fidalgo, John Chao-Chung Huang, Tyra E. Espedal, Dimitri A. Antoniadis, Jesús A. del Alamo","doi":"10.1021/acs.nanolett.4c05731","DOIUrl":null,"url":null,"abstract":"In this work, we study polarization switching behavior in scaled hafnium–zirconium oxide (HZO) ferroelectric (FE) field-effect transistors with an amorphous oxide-semiconductor channel with dimensions down to the FE domain level. Channel thickness scaling acts as an effective approach to memory window (MW) enhancement. With an indium–tin oxide channel thickness of 2.5 nm, we demonstrate a large MW of 2.2 V. Discrete FE polarization switching is observed in narrow- and short-channel transistors, where a small number of FE domains are involved. Based on a detailed MW scaling study with channel length, we estimate the size of the FE domain in our HZO to be ∼40 nm. Fatigue experiments in nanoscale transistors reveal the dominant role of FE domain pinning, which leads to negative threshold voltage shift and degraded MW. Our results open up a new avenue for probing FE physics based on single domain behavior.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"22 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Ferroelectric Polarization Switching in Nanoscale Oxide-Channel Ferroelectric Field-Effect Transistors\",\"authors\":\"Yanjie Shao, Elham Rafie Borujeny, Jorge Navarro Fidalgo, John Chao-Chung Huang, Tyra E. Espedal, Dimitri A. Antoniadis, Jesús A. del Alamo\",\"doi\":\"10.1021/acs.nanolett.4c05731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study polarization switching behavior in scaled hafnium–zirconium oxide (HZO) ferroelectric (FE) field-effect transistors with an amorphous oxide-semiconductor channel with dimensions down to the FE domain level. Channel thickness scaling acts as an effective approach to memory window (MW) enhancement. With an indium–tin oxide channel thickness of 2.5 nm, we demonstrate a large MW of 2.2 V. Discrete FE polarization switching is observed in narrow- and short-channel transistors, where a small number of FE domains are involved. Based on a detailed MW scaling study with channel length, we estimate the size of the FE domain in our HZO to be ∼40 nm. Fatigue experiments in nanoscale transistors reveal the dominant role of FE domain pinning, which leads to negative threshold voltage shift and degraded MW. Our results open up a new avenue for probing FE physics based on single domain behavior.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05731\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了尺寸降至FE畴级的非晶氧化物半导体沟道在氧化铪锆(HZO)铁电场效应晶体管中的极化开关行为。通道厚度缩放是增强存储窗口(MW)的有效方法。在氧化铟锡通道厚度为2.5 nm的情况下,我们展示了2.2 V的大MW。在窄通道和短通道晶体管中观察到离散的FE极化开关,其中涉及少量的FE畴。基于通道长度的详细MW缩放研究,我们估计我们的HZO中FE域的大小为~ 40 nm。在纳米级晶体管中进行的疲劳实验表明,FE畴的钉钉作用起主导作用,导致负阈值电压偏移和毫瓦退化。我们的结果为探索基于单畴行为的FE物理开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discrete Ferroelectric Polarization Switching in Nanoscale Oxide-Channel Ferroelectric Field-Effect Transistors

Discrete Ferroelectric Polarization Switching in Nanoscale Oxide-Channel Ferroelectric Field-Effect Transistors
In this work, we study polarization switching behavior in scaled hafnium–zirconium oxide (HZO) ferroelectric (FE) field-effect transistors with an amorphous oxide-semiconductor channel with dimensions down to the FE domain level. Channel thickness scaling acts as an effective approach to memory window (MW) enhancement. With an indium–tin oxide channel thickness of 2.5 nm, we demonstrate a large MW of 2.2 V. Discrete FE polarization switching is observed in narrow- and short-channel transistors, where a small number of FE domains are involved. Based on a detailed MW scaling study with channel length, we estimate the size of the FE domain in our HZO to be ∼40 nm. Fatigue experiments in nanoscale transistors reveal the dominant role of FE domain pinning, which leads to negative threshold voltage shift and degraded MW. Our results open up a new avenue for probing FE physics based on single domain behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信