Zhe Zhang, Yuxin Liu, Yuhang Qi, Zhuochen Yu, Prof. Dr. Xiao-bo Chen, Dr. Chunguang Li, Prof. Dr. Zhan Shi, Prof. Dr. Shouhua Feng
{"title":"具有榫卯堆叠的一维共价有机骨架中载流子输运的“自催化”加速","authors":"Zhe Zhang, Yuxin Liu, Yuhang Qi, Zhuochen Yu, Prof. Dr. Xiao-bo Chen, Dr. Chunguang Li, Prof. Dr. Zhan Shi, Prof. Dr. Shouhua Feng","doi":"10.1002/anie.202501614","DOIUrl":null,"url":null,"abstract":"<p>Covalent Organic Frameworks (COFs) are promising in the field of photonic energy conversion. However, most efforts have been concentrated on the design of ligand geometric structures and chemical bonding relationships, while understanding the impact of stacking methods on photonic energy conversion remains a significant challenge. In this work, four COFs (1D-COF, 1D-MeCOF, 1D-<i>t</i>BuCOF and 2D-COF) with the same main-chain structure but different stacking methods are designed and synthesized, using photocatalytic hydrogen evolution as a model reaction. Mortise-tenon stacked 1D-MeCOF exhibits far superior photocatalytic hydrogen evolution performance to other stacking methods, and it maintains high efficiency and stability in natural seawater systems. Extensive characterization demonstrates that such a unique mortise-tenon stacking structure of 1D-MeCOF inhibits interchain slippage, enhances π-stacking, and maximizing light absorption capabilities. Furthermore, unidirectional carrier transport characteristics of one-dimensional structure can generate a strong photo-induced self-built electric field, which acts as “self-catalysis” to accelerate carrier transport. This work provides an effective design strategy and mechanistic insights on the stacking engineering of photonic energy conversion materials.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 17","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Self-Catalysis” Acceleration of Carrier Transport in One-Dimensional Covalent Organic Frameworks with Mortise-Tenon Stacking\",\"authors\":\"Zhe Zhang, Yuxin Liu, Yuhang Qi, Zhuochen Yu, Prof. Dr. Xiao-bo Chen, Dr. Chunguang Li, Prof. Dr. Zhan Shi, Prof. Dr. Shouhua Feng\",\"doi\":\"10.1002/anie.202501614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent Organic Frameworks (COFs) are promising in the field of photonic energy conversion. However, most efforts have been concentrated on the design of ligand geometric structures and chemical bonding relationships, while understanding the impact of stacking methods on photonic energy conversion remains a significant challenge. In this work, four COFs (1D-COF, 1D-MeCOF, 1D-<i>t</i>BuCOF and 2D-COF) with the same main-chain structure but different stacking methods are designed and synthesized, using photocatalytic hydrogen evolution as a model reaction. Mortise-tenon stacked 1D-MeCOF exhibits far superior photocatalytic hydrogen evolution performance to other stacking methods, and it maintains high efficiency and stability in natural seawater systems. Extensive characterization demonstrates that such a unique mortise-tenon stacking structure of 1D-MeCOF inhibits interchain slippage, enhances π-stacking, and maximizing light absorption capabilities. Furthermore, unidirectional carrier transport characteristics of one-dimensional structure can generate a strong photo-induced self-built electric field, which acts as “self-catalysis” to accelerate carrier transport. This work provides an effective design strategy and mechanistic insights on the stacking engineering of photonic energy conversion materials.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 17\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501614\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
“Self-Catalysis” Acceleration of Carrier Transport in One-Dimensional Covalent Organic Frameworks with Mortise-Tenon Stacking
Covalent Organic Frameworks (COFs) are promising in the field of photonic energy conversion. However, most efforts have been concentrated on the design of ligand geometric structures and chemical bonding relationships, while understanding the impact of stacking methods on photonic energy conversion remains a significant challenge. In this work, four COFs (1D-COF, 1D-MeCOF, 1D-tBuCOF and 2D-COF) with the same main-chain structure but different stacking methods are designed and synthesized, using photocatalytic hydrogen evolution as a model reaction. Mortise-tenon stacked 1D-MeCOF exhibits far superior photocatalytic hydrogen evolution performance to other stacking methods, and it maintains high efficiency and stability in natural seawater systems. Extensive characterization demonstrates that such a unique mortise-tenon stacking structure of 1D-MeCOF inhibits interchain slippage, enhances π-stacking, and maximizing light absorption capabilities. Furthermore, unidirectional carrier transport characteristics of one-dimensional structure can generate a strong photo-induced self-built electric field, which acts as “self-catalysis” to accelerate carrier transport. This work provides an effective design strategy and mechanistic insights on the stacking engineering of photonic energy conversion materials.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.