具有榫卯堆叠的一维共价有机骨架中载流子输运的“自催化”加速

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhe Zhang, Yuxin Liu, Yuhang Qi, Zhuochen Yu, Prof. Dr. Xiao-bo Chen, Dr. Chunguang Li, Prof. Dr. Zhan Shi, Prof. Dr. Shouhua Feng
{"title":"具有榫卯堆叠的一维共价有机骨架中载流子输运的“自催化”加速","authors":"Zhe Zhang,&nbsp;Yuxin Liu,&nbsp;Yuhang Qi,&nbsp;Zhuochen Yu,&nbsp;Prof. Dr. Xiao-bo Chen,&nbsp;Dr. Chunguang Li,&nbsp;Prof. Dr. Zhan Shi,&nbsp;Prof. Dr. Shouhua Feng","doi":"10.1002/anie.202501614","DOIUrl":null,"url":null,"abstract":"<p>Covalent Organic Frameworks (COFs) are promising in the field of photonic energy conversion. However, most efforts have been concentrated on the design of ligand geometric structures and chemical bonding relationships, while understanding the impact of stacking methods on photonic energy conversion remains a significant challenge. In this work, four COFs (1D-COF, 1D-MeCOF, 1D-<i>t</i>BuCOF and 2D-COF) with the same main-chain structure but different stacking methods are designed and synthesized, using photocatalytic hydrogen evolution as a model reaction. Mortise-tenon stacked 1D-MeCOF exhibits far superior photocatalytic hydrogen evolution performance to other stacking methods, and it maintains high efficiency and stability in natural seawater systems. Extensive characterization demonstrates that such a unique mortise-tenon stacking structure of 1D-MeCOF inhibits interchain slippage, enhances π-stacking, and maximizing light absorption capabilities. Furthermore, unidirectional carrier transport characteristics of one-dimensional structure can generate a strong photo-induced self-built electric field, which acts as “self-catalysis” to accelerate carrier transport. This work provides an effective design strategy and mechanistic insights on the stacking engineering of photonic energy conversion materials.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 17","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Self-Catalysis” Acceleration of Carrier Transport in One-Dimensional Covalent Organic Frameworks with Mortise-Tenon Stacking\",\"authors\":\"Zhe Zhang,&nbsp;Yuxin Liu,&nbsp;Yuhang Qi,&nbsp;Zhuochen Yu,&nbsp;Prof. Dr. Xiao-bo Chen,&nbsp;Dr. Chunguang Li,&nbsp;Prof. Dr. Zhan Shi,&nbsp;Prof. Dr. Shouhua Feng\",\"doi\":\"10.1002/anie.202501614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent Organic Frameworks (COFs) are promising in the field of photonic energy conversion. However, most efforts have been concentrated on the design of ligand geometric structures and chemical bonding relationships, while understanding the impact of stacking methods on photonic energy conversion remains a significant challenge. In this work, four COFs (1D-COF, 1D-MeCOF, 1D-<i>t</i>BuCOF and 2D-COF) with the same main-chain structure but different stacking methods are designed and synthesized, using photocatalytic hydrogen evolution as a model reaction. Mortise-tenon stacked 1D-MeCOF exhibits far superior photocatalytic hydrogen evolution performance to other stacking methods, and it maintains high efficiency and stability in natural seawater systems. Extensive characterization demonstrates that such a unique mortise-tenon stacking structure of 1D-MeCOF inhibits interchain slippage, enhances π-stacking, and maximizing light absorption capabilities. Furthermore, unidirectional carrier transport characteristics of one-dimensional structure can generate a strong photo-induced self-built electric field, which acts as “self-catalysis” to accelerate carrier transport. This work provides an effective design strategy and mechanistic insights on the stacking engineering of photonic energy conversion materials.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 17\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501614\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)在光子能量转换领域具有广阔的应用前景。然而,大多数努力都集中在配体几何结构和化学键关系的设计上,而理解堆叠方法对光子能量转换的影响仍然是一个重大挑战。本文以光催化析氢为模型反应,设计并合成了四种主链结构相同但堆叠方式不同的COFs (1D‐COF、1D‐MeCOF、1D‐tbuof和2D‐COF)。与其他堆叠方法相比,榫眼堆叠1D - MeCOF具有更优越的光催化析氢性能,并且在天然海水体系中保持了较高的效率和稳定性。广泛的表征表明,这种独特的1D - MeCOF的榫卯堆叠结构抑制了链间滑动,增强了π -堆叠,并最大化了光吸收能力。此外,一维结构的单向载流子输运特性可以产生强大的光诱导自建电场,作为“自催化”加速载流子输运。这项工作为光子能量转换材料的堆叠工程提供了有效的设计策略和机理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

“Self-Catalysis” Acceleration of Carrier Transport in One-Dimensional Covalent Organic Frameworks with Mortise-Tenon Stacking

“Self-Catalysis” Acceleration of Carrier Transport in One-Dimensional Covalent Organic Frameworks with Mortise-Tenon Stacking

Covalent Organic Frameworks (COFs) are promising in the field of photonic energy conversion. However, most efforts have been concentrated on the design of ligand geometric structures and chemical bonding relationships, while understanding the impact of stacking methods on photonic energy conversion remains a significant challenge. In this work, four COFs (1D-COF, 1D-MeCOF, 1D-tBuCOF and 2D-COF) with the same main-chain structure but different stacking methods are designed and synthesized, using photocatalytic hydrogen evolution as a model reaction. Mortise-tenon stacked 1D-MeCOF exhibits far superior photocatalytic hydrogen evolution performance to other stacking methods, and it maintains high efficiency and stability in natural seawater systems. Extensive characterization demonstrates that such a unique mortise-tenon stacking structure of 1D-MeCOF inhibits interchain slippage, enhances π-stacking, and maximizing light absorption capabilities. Furthermore, unidirectional carrier transport characteristics of one-dimensional structure can generate a strong photo-induced self-built electric field, which acts as “self-catalysis” to accelerate carrier transport. This work provides an effective design strategy and mechanistic insights on the stacking engineering of photonic energy conversion materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信