2D (NH4)BiI3为机器学习提供了非易失性光电存储器

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bo Tong, Jiajun Xu, Jinhong Du, Peitao Liu, Tianming Du, Qiang Wang, Langjun Li, Yuning Wei, Jiangxu Li, Jinhua Liang, Chi Liu, Zhibo Liu, Chen Li, Lai-Peng Ma, Yang Chai, Wencai Ren
{"title":"2D (NH4)BiI3为机器学习提供了非易失性光电存储器","authors":"Bo Tong, Jiajun Xu, Jinhong Du, Peitao Liu, Tianming Du, Qiang Wang, Langjun Li, Yuning Wei, Jiangxu Li, Jinhua Liang, Chi Liu, Zhibo Liu, Chen Li, Lai-Peng Ma, Yang Chai, Wencai Ren","doi":"10.1038/s41467-025-56819-5","DOIUrl":null,"url":null,"abstract":"<p>Machine learning is the core of artificial intelligence. Using optical signals for training and converting them into electrical signals for inference, combines the strengths of both, and thus can greatly improve machine learning efficiency. Optoelectronic memories are the hardware foundation for this strategy. However, the existing optoelectronic memories cannot modulate a large number of non-volatile resistive states using ultra-short and ultra-dim light pulses, leading to low training accuracy, slow computing speed and high energy consumption. Here, we synthesized a van der Waals layered photoconductive material, (NH<sub>4</sub>)BiI<sub>3</sub>, with excellent photoconductivity and strong dielectric screening effect. We further employed it as the photosensitive control gate in a floating-gate transistor, replacing the commonly used metal control gate, to construct an optical floating gate transistor which achieves adjustable synaptic weights under ultra-dim light without gate voltage assistance. Moreover, it shows ultra-low training energy consumption to generate a non-volatile state and the largest resistive state numbers among the known non-volatile optoelectronic memories. These exceptional performances enable the construction of one-transistor-one-memory device arrays to achieve ~99% accuracy in Artificial Neural Networks. Moreover, the device arrays can match the performance of GPU in YOLOv8 while greatly reducing energy consumption.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning\",\"authors\":\"Bo Tong, Jiajun Xu, Jinhong Du, Peitao Liu, Tianming Du, Qiang Wang, Langjun Li, Yuning Wei, Jiangxu Li, Jinhua Liang, Chi Liu, Zhibo Liu, Chen Li, Lai-Peng Ma, Yang Chai, Wencai Ren\",\"doi\":\"10.1038/s41467-025-56819-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning is the core of artificial intelligence. Using optical signals for training and converting them into electrical signals for inference, combines the strengths of both, and thus can greatly improve machine learning efficiency. Optoelectronic memories are the hardware foundation for this strategy. However, the existing optoelectronic memories cannot modulate a large number of non-volatile resistive states using ultra-short and ultra-dim light pulses, leading to low training accuracy, slow computing speed and high energy consumption. Here, we synthesized a van der Waals layered photoconductive material, (NH<sub>4</sub>)BiI<sub>3</sub>, with excellent photoconductivity and strong dielectric screening effect. We further employed it as the photosensitive control gate in a floating-gate transistor, replacing the commonly used metal control gate, to construct an optical floating gate transistor which achieves adjustable synaptic weights under ultra-dim light without gate voltage assistance. Moreover, it shows ultra-low training energy consumption to generate a non-volatile state and the largest resistive state numbers among the known non-volatile optoelectronic memories. These exceptional performances enable the construction of one-transistor-one-memory device arrays to achieve ~99% accuracy in Artificial Neural Networks. Moreover, the device arrays can match the performance of GPU in YOLOv8 while greatly reducing energy consumption.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56819-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56819-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

机器学习是人工智能的核心。使用光信号进行训练并将其转换为电信号进行推理,结合了两者的优点,从而可以大大提高机器学习的效率。光电存储器是这一策略的硬件基础。然而,现有的光电存储器不能使用超短、超弱的光脉冲调制大量的非易失性电阻态,导致训练精度低、计算速度慢、能耗高。在此,我们合成了一种范德华层状光导材料(NH4)BiI3,它具有优异的光导性和强的介电屏蔽效应。我们进一步将其作为浮栅晶体管中的光敏控制栅极,取代常用的金属控制栅极,构建了一种光学浮栅晶体管,在超弱光下无需栅极电压辅助即可实现可调突触权重。此外,它显示出超低的训练能量消耗来产生非易失性状态,并且在已知的非易失性光电存储器中电阻态数最多。这些优异的性能使得单晶体管单存储器器件阵列的构建在人工神经网络中达到了99%的精度。此外,器件阵列可以匹配YOLOv8中GPU的性能,同时大大降低了能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning

2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning

Machine learning is the core of artificial intelligence. Using optical signals for training and converting them into electrical signals for inference, combines the strengths of both, and thus can greatly improve machine learning efficiency. Optoelectronic memories are the hardware foundation for this strategy. However, the existing optoelectronic memories cannot modulate a large number of non-volatile resistive states using ultra-short and ultra-dim light pulses, leading to low training accuracy, slow computing speed and high energy consumption. Here, we synthesized a van der Waals layered photoconductive material, (NH4)BiI3, with excellent photoconductivity and strong dielectric screening effect. We further employed it as the photosensitive control gate in a floating-gate transistor, replacing the commonly used metal control gate, to construct an optical floating gate transistor which achieves adjustable synaptic weights under ultra-dim light without gate voltage assistance. Moreover, it shows ultra-low training energy consumption to generate a non-volatile state and the largest resistive state numbers among the known non-volatile optoelectronic memories. These exceptional performances enable the construction of one-transistor-one-memory device arrays to achieve ~99% accuracy in Artificial Neural Networks. Moreover, the device arrays can match the performance of GPU in YOLOv8 while greatly reducing energy consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信