Siwei Chen, Zitao Tang, Mengqi Fang, Rui Sun, Xiaotong Zhang, Licheng Xiao, Seyed Sepehr Mohajerani, Na Liu, Yuze Zhang, Abdus Salam Sarkar, Dali Sun, Stefan Strauf, Eui Hyeok Yang
{"title":"通过自旋到自旋转换的单层二维稀释磁性半导体的磁开关","authors":"Siwei Chen, Zitao Tang, Mengqi Fang, Rui Sun, Xiaotong Zhang, Licheng Xiao, Seyed Sepehr Mohajerani, Na Liu, Yuze Zhang, Abdus Salam Sarkar, Dali Sun, Stefan Strauf, Eui Hyeok Yang","doi":"10.1002/adfm.202418647","DOIUrl":null,"url":null,"abstract":"<p>The integration of 2D van der Waals (vdW) magnets with topological insulators or heavy metals holds great potential for realizing next-generation spintronic memory devices. However, achieving high-efficiency spin–orbit torque (SOT) switching of monolayer vdW magnets at room temperature poses a significant challenge, particularly without an external magnetic field. Here, it is shown field-free, deterministic, and nonvolatile SOT switching of perpendicular magnetization in the monolayer, diluted magnetic semiconductor (DMS), Fe-doped MoS<sub>2</sub> (Fe:MoS<sub>2</sub>) at up to 380 K with a current density of ≈7 × 10<sup>4</sup> A cm<sup>−2</sup>. The in situ doping of Fe into monolayer MoS<sub>2</sub> via chemical vapor deposition and the geometry-induced strain in the crystal break the rotational switching symmetry in Fe:MoS<sub>2</sub>, promoting field-free SOT switching by generating out-of-plane spins via spin-to-spin conversion. An apparent anomalous Hall effect (AHE) loop shift at a zero in-plane magnetic field verifies the existence of z spins in Fe:MoS<sub>2</sub>, inducing an antidamping-like torque that facilitates field-free SOT switching. This field-free SOT application using a 2D ferromagnetic monolayer provides a new pathway for developing highly power-efficient spintronic memory devices.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 27","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Switching in Monolayer 2D Diluted Magnetic Semiconductors via Spin-to-Spin Conversion\",\"authors\":\"Siwei Chen, Zitao Tang, Mengqi Fang, Rui Sun, Xiaotong Zhang, Licheng Xiao, Seyed Sepehr Mohajerani, Na Liu, Yuze Zhang, Abdus Salam Sarkar, Dali Sun, Stefan Strauf, Eui Hyeok Yang\",\"doi\":\"10.1002/adfm.202418647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of 2D van der Waals (vdW) magnets with topological insulators or heavy metals holds great potential for realizing next-generation spintronic memory devices. However, achieving high-efficiency spin–orbit torque (SOT) switching of monolayer vdW magnets at room temperature poses a significant challenge, particularly without an external magnetic field. Here, it is shown field-free, deterministic, and nonvolatile SOT switching of perpendicular magnetization in the monolayer, diluted magnetic semiconductor (DMS), Fe-doped MoS<sub>2</sub> (Fe:MoS<sub>2</sub>) at up to 380 K with a current density of ≈7 × 10<sup>4</sup> A cm<sup>−2</sup>. The in situ doping of Fe into monolayer MoS<sub>2</sub> via chemical vapor deposition and the geometry-induced strain in the crystal break the rotational switching symmetry in Fe:MoS<sub>2</sub>, promoting field-free SOT switching by generating out-of-plane spins via spin-to-spin conversion. An apparent anomalous Hall effect (AHE) loop shift at a zero in-plane magnetic field verifies the existence of z spins in Fe:MoS<sub>2</sub>, inducing an antidamping-like torque that facilitates field-free SOT switching. This field-free SOT application using a 2D ferromagnetic monolayer provides a new pathway for developing highly power-efficient spintronic memory devices.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 27\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202418647\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202418647","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
二维范德华(vdW)磁体与拓扑绝缘体或重金属的集成对于实现下一代自旋电子存储器件具有巨大的潜力。然而,在室温下实现单层vdW磁体的高效自旋轨道转矩(SOT)开关是一个重大挑战,特别是在没有外部磁场的情况下。在这里,它显示了在高达380 K的电流密度≈7 × 104 a cm−2下,在单层稀释磁性半导体(DMS), Fe掺杂MoS2 (Fe:MoS2)中垂直磁化的无场,确定性和非易失性SOT开关。通过化学气相沉积将Fe原位掺杂到单层MoS2中,晶体中的几何诱导应变打破了Fe:MoS2的旋转开关对称性,通过自旋到自旋转换产生面外自旋,促进了无场SOT开关。在零面内磁场下,明显的反常霍尔效应(AHE)环路移位证实了Fe:MoS2中z自旋的存在,诱导了类似抗阻尼的转矩,从而促进了无场SOT开关。这种使用二维铁磁单层的无场SOT应用为开发高能效自旋电子存储器件提供了新的途径。
Magnetic Switching in Monolayer 2D Diluted Magnetic Semiconductors via Spin-to-Spin Conversion
The integration of 2D van der Waals (vdW) magnets with topological insulators or heavy metals holds great potential for realizing next-generation spintronic memory devices. However, achieving high-efficiency spin–orbit torque (SOT) switching of monolayer vdW magnets at room temperature poses a significant challenge, particularly without an external magnetic field. Here, it is shown field-free, deterministic, and nonvolatile SOT switching of perpendicular magnetization in the monolayer, diluted magnetic semiconductor (DMS), Fe-doped MoS2 (Fe:MoS2) at up to 380 K with a current density of ≈7 × 104 A cm−2. The in situ doping of Fe into monolayer MoS2 via chemical vapor deposition and the geometry-induced strain in the crystal break the rotational switching symmetry in Fe:MoS2, promoting field-free SOT switching by generating out-of-plane spins via spin-to-spin conversion. An apparent anomalous Hall effect (AHE) loop shift at a zero in-plane magnetic field verifies the existence of z spins in Fe:MoS2, inducing an antidamping-like torque that facilitates field-free SOT switching. This field-free SOT application using a 2D ferromagnetic monolayer provides a new pathway for developing highly power-efficient spintronic memory devices.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.