单层非晶碳纳米复合材料的本征增韧

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-04-02 DOI:10.1016/j.matt.2025.102000
Bongki Shin , Bo Ni , Chee-Tat Toh , Doug Steinbach , Zhenze Yang , Lucas M. Sassi , Qing Ai , Kangdi Niu , Junhao Lin , Kazu Suenaga , Yimo Han , Markus J. Buehler , Barbaros Özyilmaz , Jun Lou
{"title":"单层非晶碳纳米复合材料的本征增韧","authors":"Bongki Shin ,&nbsp;Bo Ni ,&nbsp;Chee-Tat Toh ,&nbsp;Doug Steinbach ,&nbsp;Zhenze Yang ,&nbsp;Lucas M. Sassi ,&nbsp;Qing Ai ,&nbsp;Kangdi Niu ,&nbsp;Junhao Lin ,&nbsp;Kazu Suenaga ,&nbsp;Yimo Han ,&nbsp;Markus J. Buehler ,&nbsp;Barbaros Özyilmaz ,&nbsp;Jun Lou","doi":"10.1016/j.matt.2025.102000","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) materials have immense potential to advance flexible electronics, yet they are limited by low fracture toughness. This study addresses the intrinsic toughening of monolayer amorphous carbon (MAC), a 2D nanocomposite, to overcome this challenge. By incorporating both amorphous and nanocrystalline phases, MAC significantly enhances energy absorption during fracture propagation, as evidenced by crack blunting, deflecting, and bridging. Using <em>in situ</em> tensile tests under a scanning electron microscope, our results indicate an 8-fold increase in the energy release rate compared to monolayer graphene, along with improved fracture strain and crack stability. Molecular dynamics simulations demonstrate the impact of phase composition on fracture energy. Our results present a scalable toughening strategy for 2D materials, potentially broadening their applications in fields requiring robust fracture resistance.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 4","pages":"Article 102000"},"PeriodicalIF":17.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic toughening in monolayer amorphous carbon nanocomposites\",\"authors\":\"Bongki Shin ,&nbsp;Bo Ni ,&nbsp;Chee-Tat Toh ,&nbsp;Doug Steinbach ,&nbsp;Zhenze Yang ,&nbsp;Lucas M. Sassi ,&nbsp;Qing Ai ,&nbsp;Kangdi Niu ,&nbsp;Junhao Lin ,&nbsp;Kazu Suenaga ,&nbsp;Yimo Han ,&nbsp;Markus J. Buehler ,&nbsp;Barbaros Özyilmaz ,&nbsp;Jun Lou\",\"doi\":\"10.1016/j.matt.2025.102000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional (2D) materials have immense potential to advance flexible electronics, yet they are limited by low fracture toughness. This study addresses the intrinsic toughening of monolayer amorphous carbon (MAC), a 2D nanocomposite, to overcome this challenge. By incorporating both amorphous and nanocrystalline phases, MAC significantly enhances energy absorption during fracture propagation, as evidenced by crack blunting, deflecting, and bridging. Using <em>in situ</em> tensile tests under a scanning electron microscope, our results indicate an 8-fold increase in the energy release rate compared to monolayer graphene, along with improved fracture strain and crack stability. Molecular dynamics simulations demonstrate the impact of phase composition on fracture energy. Our results present a scalable toughening strategy for 2D materials, potentially broadening their applications in fields requiring robust fracture resistance.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 4\",\"pages\":\"Article 102000\"},\"PeriodicalIF\":17.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238525000438\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525000438","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料在推进柔性电子方面具有巨大的潜力,但它们受到低断裂韧性的限制。本研究解决了单层非晶碳(MAC)的固有增韧,一种二维纳米复合材料,以克服这一挑战。通过加入非晶相和纳米晶相,MAC显著增强了断裂扩展过程中的能量吸收,表现为裂纹钝化、偏转和桥接。通过扫描电子显微镜下的原位拉伸测试,我们的研究结果表明,与单层石墨烯相比,能量释放率增加了8倍,同时断裂应变和裂纹稳定性也有所改善。分子动力学模拟证明了相组成对断裂能的影响。我们的研究结果提出了一种可扩展的二维材料增韧策略,有可能扩大其在需要强大抗断裂性的领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intrinsic toughening in monolayer amorphous carbon nanocomposites

Intrinsic toughening in monolayer amorphous carbon nanocomposites

Intrinsic toughening in monolayer amorphous carbon nanocomposites
Two-dimensional (2D) materials have immense potential to advance flexible electronics, yet they are limited by low fracture toughness. This study addresses the intrinsic toughening of monolayer amorphous carbon (MAC), a 2D nanocomposite, to overcome this challenge. By incorporating both amorphous and nanocrystalline phases, MAC significantly enhances energy absorption during fracture propagation, as evidenced by crack blunting, deflecting, and bridging. Using in situ tensile tests under a scanning electron microscope, our results indicate an 8-fold increase in the energy release rate compared to monolayer graphene, along with improved fracture strain and crack stability. Molecular dynamics simulations demonstrate the impact of phase composition on fracture energy. Our results present a scalable toughening strategy for 2D materials, potentially broadening their applications in fields requiring robust fracture resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信